

• Mechanical-to-electrical correspondence in the current analogy:

Mechanical Variable	Electrical Variable
Damping, c	Resistance, <i>R</i>
Stiffness ⁻¹ , <i>k</i> ⁻¹	Capacitance, C
Mass, <i>m</i>	Inductance, L
Force, f	Voltage, V
Velocity, v	Current, I

From
$$dW = Vdq + fedg$$

 \Rightarrow force is given by:
 $F_e = \frac{\partial W(q,q)}{\partial g}\Big|_{q=cont} = \frac{\partial}{\partial g}\Big(\frac{1}{2}\frac{q^2}{2A}g\Big)$
 $\therefore \left[\overline{F_e} = \frac{1}{2}\frac{q^2}{A}\right] \Rightarrow indep. of gap specing!$
 $\Rightarrow Voltase is given by:$
 $V = \frac{\partial W(q,q)}{\partial q}\Big|_{g=cond} = \frac{\partial}{\partial q}\Big(\frac{1}{2}\frac{q^2}{2A}g\Big)$
 $= \frac{qq}{A} \therefore \overline{V^* \frac{q}{C}} \sqrt{2}$
 $Voltase Control$ (consistent wi what we know)
 $\downarrow = \frac{qq}{F_e} + \frac{1}{F_e} + \frac{1}{F_e} = -q$
 $Want to write fe^{2} f(V)$
 $Wa know this:$
 $dW = Vdq + fedg$
 $\downarrow + \cdot$
 $V = f(q_i q)$

Need: W'= f(V,g)

CTN 3/20/18 Co-Energy Formulation for Voltage-Control $+q \stackrel{+}{\underset{+}{+}} F_e \stackrel{\leftarrow}{F_e}$ $* \mathcal{W}'(V,g) = Vq - \mathcal{W}(q,g)$

$$\sum_{i=1}^{n} want to replace charge q w voltage Y
Can get this using a legendre transformation.
Energy $\frac{1}{2} C_0 - Energy]$
 $e^{-Effort (e.g., force, voltage, ...)}$
 $e_i fulling (e.g., force, voltage, ...)$
 $h'(e_i) = \int_0^{e_i} qde = \int_0^{e_i} \Phi^{-1}(e) de (e.g., e.g.)$
 $for a linear system, there will be equal.$
Can define co-energy as:
 $M'(e_i) = eq - M(q)$ (form the plot)
 e_{rersg} (form the plot)$$

Differentially, this becomes $dW'(V_{ig}) = (qdV + Vdq) - dW(q_{ig})$ $(dW(q_{ig}) = Fedg + Vdq]$ $[dW'(V_{ig}) = qdV - Fedg]$

