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Voltage-Controllable Center Frequency

Gap
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Microresonator Thermal Stability

• Thermal stability of poly-Si micromechanical resonator is 
10X worse than the worst case of AT-cut quartz crystal

1.7ppm/oC

Poly-Si resonator
-17ppm/oC
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• Use a temperature dependent mechanical stiffness to null 
frequency shifts due to Young’s modulus thermal dep.

[W.-T. Hsu, et al., IEDM’00]

• Problems:
stress relaxation
compromised design 

flexibility

[Hsu et al, IEDM’00]

[Hsu et al IEDM 2000]

Geometric-Stress Compensation
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Voltage-Controllable Center Frequency

Gap
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Excellent Temperature Stability

Uncompensated 
resonator

1.7ppm/oC

100
[Ref: Hafner]

Elect.-Stiffness
Compensation
0.24ppm/oC

AT-cut 
Quartz 

Crystal at 
Various 

Cut 
Angles

Top Electrode-to-
Resonator Gap 

Top Electrode-to-
Resonator Gap 

Elect. Stiffness: 
ke ~ 1/d3 

Elect. Stiffness: 
ke ~ 1/d3 

Frequency:
fo ~ (km - ke)

0.5 

Frequency:
fo ~ (km - ke)

0.5 

Counteracts 
reduction in 

frequency due to 
Young’s modulus 
temp. dependence

Counteracts 
reduction in 

frequency due to 
Young’s modulus 
temp. dependence

Top Metal 
Electrode

Resonator

On par with 
quartz!

On par with 
quartz!

[Hsu [Hsu et alet al MEMSMEMS’’02]02]
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• Slits help to release the stress generated by lateral 
thermal expansion linear TCf curves –0.24ppm/oC!!!
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Design/Performance:
fo =10MHz, Q=4,000

VP=8V, he=4m
do=1000Å, h=2m
Wr=8m, Lr=40m

0.24ppm/oC

[Hsu et al MEMS’02]

Measured f/f vs. T for ke-
Compensated Resonators
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Can One Cancel ke w/ Two Electrodes?

•What if we don’t like the 
dependence of frequency on VP?

• Can we cancel ke via a differential 
input electrode configuration?

• If we do a similar analysis for Fd2

at Electrode 2:
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Subtracts from the 
Fd1 term, as expected

Adds to the quadrature term  ke’s add, 
no matter the electrode configuration!
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Problems With Parallel-Plate C Drive

•Nonlinear voltage-to-force 
transfer function
Resonance frequency becomes 

dependent on parameters (e.g., 
bias voltage VP)

Output current will also take on 
nonlinear characteristics as 
amplitude grows (i.e., as x 
approaches do)

Noise can alias due to 
nonlinearity

• Range of motion is small
For larger motion, need larger 

gap … but larger gap weakens 
the electrostatic force

Large motion is often needed 
(e.g., by gyroscopes, 
vibromotors, optical MEMS)
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Electrostatic Comb Drive
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Electrostatic Comb Drive

• Use of comb-capacitive tranducers brings many benefits
Linearizes voltage-generated input forces
 (Ideally) eliminates dependence of frequency on dc-bias
Allows a large range of motion

Comb-Driven Folded Beam Actuator
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Stator Rotor
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Typical Drive & Sense Configuration
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z
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Comb-Drive Force Equation (2nd Pass)

• In our 1st pass, we accounted for
Parallel-plate capacitance between stator and rotor

• … but neglected:
Fringing fields
Capacitance to the substrate

• All of these capacitors must be included when evaluating the 
energy expression!

Stator Rotor

Ground 
Plane


