

Problems With MEMS-First	
 Many masking steps needed, plus CMP required → cost can grow if you're not careful 	
 Processes using trenches sacrifice lithographic resolution in microstructures 	
 MEMS must withstand transistor processing temperatures Precludes the use of structural materials with low temperature req'mts: metals, polymers, etc. Exotic MEMS (e.g., ZnO) that can contaminate transistors 	
during their processing are not permissible & thus, not truly modular	
 Foundry acceptance not guaranteed and might be rare 	ļ
EC247B/MEC218: Introduction to MEMS Design LecM 16 C. Nauven 4/21/15	24

For UCBenkeley	undry Acce	ptance o	f MEMS	5-First	?
 Is a CMI of aggre grown ov to yield 	P'ed silicon surfa ssively scaled tr er the CMP'ed s a "pristine" surf	ce sufficien ansistors? urface and ace?	tly pure fo low about i removed vie	r fabricat if an oxide a a wet et	ion : is ch
 Is epi sil pure for 	licon grown as po fabrication of a	art of a sea aggressively	ling proces: scaled trar	s sufficien nsistors?	tly
• CMOS is [™] Featu [™] Conta pre-p [™] Many MEMS circui	many times more sizes on the mination a big is rocessed wafers foundries will not or not \rightarrow just ts with unknowns	e difficult nm scale for sue: many f for contam ot accept an can't guarar ; in starting	to run than billions of oundries m ination rea y pre-proc ntee workin silicon	MEMS devices ay not acc sons essed waf g transiste	:ept ers, or
EEC247B/MEC218: I	ntroduction to MEMS Design	LecM 16	C. Nguyen	4/21/15	2

EE 247B/ME 218: Introduction to MEMS Design

Lecture 25m2: Sensing Circuit Non-Idealities & Integration

Copyright © 2018 Regents of the University of California

CTN 4/19/18

CTN 4/19/18

Transistor

Circuits

ŠİÓ.

SIO.

SiO

Copyright © 2018 Regents of the University of California

