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Actual Op Amps Are Not Ideal

• Actual op amps, of course, are not ideal; rather, they …
Generate noise
Have finite gain, Ao
Have finite bandwidth, b
Have finite input resistance, Ri
Have finite input capacitance, Ci
Have finite output resistance, Ro
Have an offset voltage VOS between their (+) and (-) 

terminals
Have input bias currents
Have an offset IOS between the bias currents into the 

(+) and (-) terminals
Have finite slew rate
Have finite output swing (governed by the supply voltage 

used, -L to +L)

• And what’s worse: All of the above can be temperature (or 
otherwise environmentally) dependent!
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Finite Op Amp Gain and Bandwidth
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This pole actually designed in for some op amps.

Open-loop response of the amplifier.

• For an ideal op amp:

• In reality, the gain is given by:

• For >>b:
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Effect of Finite Op Amp Gain
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Integration of MEMS and Transistors
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Integrate or Not?

• Benefits:
Lower parasitic capacitance and resistance  improved 

sensitivity and resolution, higher operation frequency
Better reliability
Reduced size  lower cost? 
Reduced packaging complexity  integration is a form of 

packaging  lower cost?
Higher integration density supports greater functionality

• Challenges:
Temperature ceilings imposed by the transistors or MEMS
Protecting one process from the other
Surface topography of MEMS
Material incompatibilities
Multiplication of yield losses (versus non-integrated)
Acceptance by transistor foundries
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250 nm CMOS Cross-Section
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28 masks and a lot more 
complicated than MEMS!

28 masks and a lot more 
complicated than MEMS!
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•Mixed:

problem: multiple passivation/protection steps  large 
number of masks required

problem: custom process for each product

•MEMS-first or MEMS-last:

adv.: modularity  flexibility  less development time

adv.: low pass./protection complexity  fewer masks

Merged MEMS/Transistor 
Technologies (Process Philosophy)

MEMS-Last:

MEMS-First:
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Analog Devices BiMEMS Process

• Interleaved MEMS and 4 m BiMOS processes (28 masks)

• Diffused n+ runners used to interconnect MEMS & CMOS

• Relatively deep junctions allow for MEMS poly stress anneal

• Used to manufacture the ADXL-50 accelerometer and 
Analog Devices family of accelerometers
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Analog Devices BiMEMS Process (cont)

• Examples:

Analog Devices ADXL 78

• Can you list the advances in the process from old to new?

Old New

Analog Devices ADXL-202 
Multi-Axis Accelerometer
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•Mixed:

problem: multiple passivation/protection steps  large 
number of masks required

problem: custom process for each product

•MEMS-first or MEMS-last:

adv.: modularity  flexibility  less development time

adv.: low pass./protection complexity  fewer masks

Merged MEMS/Transistor 
Technologies (Process Philosophy)
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•Modular technology minimizes product updating effort
Module 1: micromachining process (planar technology)
Module 2: transistor process (planar IC technology)

• Adv.: (ideally) no changes needed to the transistor 
process

• Adv.: high temperature ceiling for some MEMS materials

• Challenges:
Reducing topography after MEMS processing so 

transistors can be processed
Maximizing the set of permissible MEMS materials; the 

materials must be able to withstand transistor 
processing temperatures

Getting transistor foundries to accept pre-processed 
wafers

MEMS-First Integration

EEC247B/MEC218: Introduction to MEMS Design LecM 16 C. Nguyen  4/21/15  21

• Problem: structural topography interferes with lithography
difficult to apply photoresist for submicron circuits

• Soln.: build mechanics in a trench, then planarize before 
circuit processing [Smith et al, IEDM’95]

MEMS-First Integration
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• Used to demonstrate functional fully integrated oscillators

• Issues:
 lithography and etching may be difficult in trench  may 

limit dimensions (not good for RF MEMS)
mechanical material must stand up to IC temperatures 

(>1000oC)  problem for some metal materials
might be contamination issues for foundry IC’s

[Smith et al, IEDM’95]

MEMS-First Ex: Sandia’s iMEMS
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Bosch/Stanford MEMS-First Process

• Single-crystal silicon microstructures sealed under epi-poly 
encapsulation covers

•Many masking steps needed, but very stable structures

Resonator Epi-Poly Cap

Substrate

Contact
Epi-Poly Seal

Mechanical Device

Transistor Circuits

Vacuum 
Chamber

[Kim, Kenny 
Trans’05]

Epi-silicon 
for CMOS 
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Problems With MEMS-First

•Many masking steps needed, plus CMP required  cost can 
grow if you’re not careful

• Processes using trenches sacrifice lithographic resolution in 
microstructures

•MEMS must withstand transistor processing temperatures
Precludes the use of structural materials with low 

temperature req’mts: metals, polymers, etc.

• Exotic MEMS (e.g., ZnO) that can contaminate transistors 
during their processing are not permissible
thus, not truly modular

• Foundry acceptance not guaranteed and might be rare
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Foundry Acceptance of MEMS-First?

• Is a CMP’ed silicon surface sufficiently pure for fabrication 
of aggressively scaled transistors? How about if an oxide is 
grown over the CMP’ed surface and removed via a wet etch 
to yield a “pristine” surface?

• Is epi silicon grown as part of a sealing process sufficiently 
pure for fabrication of aggressively scaled transistors?

• CMOS is many times more difficult to run than MEMS
Feature sizes on the nm scale for billions of devices
Contamination a big issue: many foundries may not accept 

pre-processed wafers for contamination reasons
Many foundries will not accept any pre-processed wafers, 

MEMS or not  just can’t guarantee working transistor 
circuits with unknowns in starting silicon
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•Mixed:

problem: multiple passivation/protection steps  large 
number of masks required

problem: custom process for each product

•MEMS-first or MEMS-last:

adv.: modularity  flexibility  less development time

adv.: low pass./protection complexity  fewer masks

Merged MEMS/Transistor 
Technologies (Process Philosophy)
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•Modular technology minimizes product updating effort
Module 1: transistor process (planar IC technology)
Module 2: micromachining process (planar technology)

• Adv.: foundry friendly
Virtually any foundry can be used  can use the 

lowest cost transistor circuits (big advantage)

• Adv.: topography after circuit fabrication is quite small, 
especially given the use of CMP to planarize the 
metallization layers

• Issue: limited thermal budget limits the set of usable 
structural materials
Metallization goes bad if temperature gets too high
Aluminum grows hillocks and spikes junctions if T>500oC
Copper diffusion can be an issue at high temperature
Low-k dielectrics used around metals may soon lower 

the temperature ceiling to only 320oC 

MEMS-Last Integration
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Berkeley Polysilicon MICS Process

• Uses surface-micromachinedpolysilicon microstructures with 
silicon nitride layer between transistors & MEMS
Polysilicon dep. T~600oC; nitride dep. T~835oC
1100oC RTA stress anneal for 1 min.
metal and junctions must withstand temperatures ~835oC
tungsten metallization used with TiSi2 contact barriers
 in situ doped structural polySi; rapid thermal annealing
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• Fabrication steps compatible with planar IC processing

Surface Micromachining
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• Completely monolithic, low phase noise, high-Q oscillator 
(effectively, an integrated crystal oscillator)

• To allow the use of >600oC processing temperatures, 
tungsten (instead of aluminum) is used for metallization

Oscilloscope
Output

Waveform

Single-Chip Ckt/MEMS Integration

[Nguyen, Howe 1993][Nguyen, Howe 1993]
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• Problem: tungsten is not an accepted primary interconnect 
metal

• Challenge: retain conventional metallization
minimize post-CMOS processing temperatures
explore alternative structural materials (e.g., plated 

nickel, SiGe [Franke, Howe et al, MEMS’99])
Limited set of usable structural materials  not the 

best situation, but workable

Usable MEMS-Last Integration
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Poly-SiGe MICS Process

•MICS = “Modular Integration of Circuits and Structures”

•MEMS-last process, where SiGe micromechanics are planar 
processed directly above conventional foundry circuits
enabled by lower deposition temperature of SiGe ~450oC
Adv.: alleviates contamination issues of pre-circuit 

processes, allowing a wider choice of IC technologies

[Franke, Howe 2001]

Shielded vertical 
signal path to gate 
of input transistor5-Level Metal 

Foundry 
CMOS

Poly-SiGe
MEMS

Shielded 
Interconnect to 
drive electrode
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Polysilicon Germanium

• Deposition
LPCVD thermal decomposition 

of GeH4 and SiH4 or Si2H6
Rate >50 Å/min, T < 475°C, 

P = 300-600 mT
At higher [Ge]: rate ↑, T ↓
In-situ doping, ion 

implantation

• Dry Etching
Similar to poly-Si, use F, Cl, 

and Br- containing plasmas
Rate ~0.4 m/min

•Wet Etching
H2O2 @ 90oC: can get 4 

orders of magnitude 
selectivity between >80% and 
<60% Ge content

Good release etchant
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Poly-SiGe Mechanical Properties

• Conformal deposition

• Low as-deposited stress (when 
its done right)

• Young’s modulus ~ 146 GPa (for 
poly-Si0.35Ge0.65)

• Density ~4280 kg/m3

• Acoustic velocity ~5840 m/s
(25% lower than polysilicon)
Harder to achieve high 

frequency devices

• Fracture strain 1.7% (compared 
to 1.5% for MUMPS polySi)

•Q=30,000 for n-type poly-Ge
in vacuum
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UCB Poly-SiGe MICS Process

• 2 m standard CMOS process w/ Al metallization

• P-type poly-Si0.35Ge0.65 structural material; poly-Ge
sacrificial material

• Process:
Passivate CMOS w/ LTO @ 400oC
Open vias to interconnect runners
Deposit & pattern ground plane
RTA anneal to lower resistivity (550oC, 30s)

Transistor 
Circuits
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ASIMPS Ckt/MEMS Integration Process

•MEMS constructed from 
metal/insulator laminates 
of foundry CMOS

• Top metal layer used as 
etch mask for CHF3/O2

oxide etch

• Structures released via a 
final SF6 isotropic dry etch

• Independent electrostatic 
actuation possible due to 
multiple insulated metal 
layers

• Stress issues can be tricky
Must design defensively 

against warping

[G. Fedder, CMU]

Metal/insulator 
stack
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ASIMPS Ckt/MEMS Integration Process

• Direct integration of Al/oxide MEMS structure with silicon 
CMOS or SiGe BiCMOS circuits

•Multiple electrodes within structures

• Derivatives for bulk silicon structures

Etched Pit

Composite
Beam

Stator
Electrodes

CMOS
Transistor

Silicon Substrate

[G. Fedder, CMU]

Gyro
Resonator

Uncooled IR 
Detector Element
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Actual Op Amps Are Not Ideal

• Actual op amps, of course, are not ideal; rather, they …
Generate noise
Have finite gain, Ao
Have finite bandwidth, b
Have finite input resistance, Ri
Have finite input capacitance, Ci
Have finite output resistance, Ro
Have an offset voltage VOS between their (+) and (-) 

terminals
Have input bias currents
Have an offset IOS between the bias currents into the 

(+) and (-) terminals
Have finite slew rate
Have finite output swing (governed by the supply voltage 

used, -L to +L)

• And what’s worse: All of the above can be temperature (or 
otherwise environmentally) dependent!


