Lecture 27: Gyro Minimum Detectable Signal (MDS)

- Announcements:
- This is our last lecture
- HW\#7 online since Tuesday and due Friday, May 4, 10 a.m.
- Project slide \#3 due Friday, April 27
- Project outbrief sign up sheet will be on Prof. Nguyen's office door later today
$\stackrel{y}{c}$ Slots will be on Monday and Tuesday of Finals week
- Old Final Exams passed out
- Final Exam Info Sheet will be online
- Review Session at a time and location TBD
- Reading: Senturia Chpt. 16
- Lecture Topics:
${ }^{4}$ Minimum Detectable Signal
$\stackrel{4}{4}$ Noise
- Circuit Noise Calculations
- Noise Sources
-Equivalent Input-Referred Noise
*) Gyro MDS
- Equivalent Noise Circuit
- Example ARW Determination
$\stackrel{H}{c}$ Course Wrap Up (Final Exam Info)

- Last Time:

- Going through input referred noise
- Now, continue with this

Input-Refened Cuman Norris:
Open inputs; equate output vortioge no is to $\mathrm{Caxex}^{\mathrm{I}}+\mathrm{Cax}_{\mathrm{ax}} \mathbb{I} \rightarrow$ solve for $\mathrm{i}_{\text {eq }}^{2}$

$\overline{V_{i a}^{2}}$:

$\therefore \overline{v_{O I}^{2}}=\overline{i_{j a}^{2}} R_{f}^{2}+\overline{i_{f}^{2}} R_{f}^{2}+\overline{N_{i a}^{2}}$
Case II: $\quad v_{0 I I}=i_{\text {eq }} R_{f} \rightarrow \overline{N_{O I I}^{2}}=\overline{i_{e q}^{2}} P_{f}^{2}$
Now, set $\overline{N_{O I}^{2}}=\overline{v_{O B}^{2}}$:

$$
\overline{i_{e q}^{2}}=\overline{i_{i a}^{2}}+\overline{i_{f}^{2}}+\frac{\overline{N_{i a}^{2}}}{R_{f}^{2}}
$$

Nav, gat the inputretered voltage-nope:
Short inputs; equate output voltage noise.

Cone I: $v_{\Delta I}=a v_{i a} \rightarrow \overline{N_{0 I}^{2}}=a^{2} v_{i a}^{2}$
Casefy: $N_{\text {DI }}=a N_{N_{9}} \rightarrow \overline{N_{\text {AI }}^{2}}=u^{2} \widehat{N_{e q}^{2}}$

$$
\overline{V_{o i}^{2}}=\overline{N_{o f}^{2}} \rightarrow \overline{N_{e q}^{2}}=\overline{N_{i d}^{2}}
$$

Lecture 27w: Gyro MDS

$$
\Theta(s)=\frac{s\left(\omega_{0} / Q\right)}{s^{2}+s\left(\omega_{0} / Q\right)+\omega_{0}^{2}}
$$

$S=0: ~(H)=0$

$$
S=j \omega_{0}: \Theta\left(j \omega_{0}\right)=1
$$

$s=\infty: \Theta(\infty)=0$

$$
\begin{aligned}
i_{0} & =\eta_{e} \dot{x}_{s}=\underbrace{2 \frac{\omega_{d}}{\omega_{s}} Q_{s} x_{d} \eta_{e} \Theta_{s}\left(j \omega_{d}\right)}_{A \hat{A} \text { scale factan }} \cdot \Omega \\
& \Rightarrow \underbrace{i_{0}=A \Omega, \text { where } A=2 \frac{\omega_{d}}{\omega_{s}} Q_{s} x_{d} \eta_{e} \Theta_{s}\left(j \omega_{d}\right)}_{\text {inpul rotation }}
\end{aligned}
$$

Whan $\Omega=\Omega_{\text {mh }} \triangleq$ MDS $\rightarrow i_{0}=\underbrace{i \text { eqTot }}$
 noiv cumat enterny the sence amplier

$$
\begin{aligned}
& \therefore i_{\text {eqrot }}=A \Omega_{\min } \\
& \Omega_{\min }=\frac{i \text { eq }}{A}\left(\frac{3600 s}{h r}\right)\left(\frac{180^{\circ}}{\pi}\right) \quad[(\% / h r) / \sqrt{H z}] \\
& \text { Angle Randan Walk }=A R W=\frac{1}{60} \Omega_{m h}[0 / \sqrt{n r}]
\end{aligned}
$$

Eavier to determine directional ern as a fanction of eloprad time

$$
\begin{aligned}
& \Rightarrow \text { the toke curmat entering the amplitin input: (iegror) }
\end{aligned}
$$

Brownian motion noise of the sense element
${ }^{y}$ determitad entriely by note in $r_{x} \rightarrow \overline{f_{r_{x}}^{2}}$
manet to be when convert to all electric cit:

- Go through slides 45-49 in Module 17
- Related courses at UC Berkeley:
$\stackrel{\wedge}{\wedge}$ EE 143: Microfabrication Technology
$\left.{ }^{4}\right)$ EE 147/247A: Introduction to MEMS
$\stackrel{\Perp}{\leftrightarrows}$ ME 119: Introduction to MEMS (mainly fabrication)
${ }_{4} \Rightarrow$ Bio Eng 121: Introduction to Micro and Kano Biotechnology and BioMEMS
$\left.{ }^{4}\right)$ ME C219-EE C246: MEMS Design
${ }^{4}$ E $E E$ 290M?

