

EE C247B - ME C218 Introduction to MEMS Design Spring 2018

Prof. Clark T.-C. Nguyen

Dept. of Electrical Engineering & Computer Sciences
University of California at Berkeley
Berkeley, CA 94720

Lecture Module 12: Capacitive Transducers

EE C245: Introduction to MEMS Design

LecM 1

C. Nguyen

11/18/0

UG Berkeley

Lecture Outline

- Reading: Senturia, Chpt. 5, Chpt. 6
- Lecture Topics:
 - - Charge Control
 - ◆ Voltage Control
 - Parallel-Plate Capacitive Transducers
 - Linearizing Capacitive Actuators
 - Electrical Stiffness
 - - ◆ 1st Order Analysis
 - ◆ 2nd Order Analysis

EE C245: Introduction to MEMS Design

LecM 12

C. Nguyen

11/18/08

Electrostatic Force (Voltage Control)

• Find co-energy in terms of voltage (w/ gap held constant)

$$W' = \int_{0}^{V} q(g, V')dV' = \int_{0}^{V} \left(\varepsilon \frac{A}{g}\right)V'dV' = \frac{1}{2}\left(\frac{\varepsilon A}{g}\right)V^{2} = \frac{1}{2}CV^{2}$$
(as expected)

 Variation of co-energy with respect to gap yields electrostatic force:

$$F_e = -\frac{\partial W'(V,g)}{\partial g}\bigg|_V = -\frac{1}{2} \left(-\frac{\varepsilon A}{g^2}\right) V^2 = \frac{1}{2} \frac{C}{g} V^2$$
strong function of gap!

 Variation of co-energy with respect to voltage yields charge:

$$q = \frac{\partial W'(V,g)}{\partial V}\Big|_g = \left(\frac{\varepsilon A}{g}\right)V = CV$$
 as expected

EE C245: Introduction to MEMS Design

LecM 12

. Nguyen

11/18/0

Advantages of Electrostatic Actuators

- Easy to manufacture in micromachining processes, since conductors and air gaps are all that's needed → low cost!
- Energy conserving \rightarrow only parasitic energy loss through I²R losses in conductors and interconnects
- Variety of geometries available that allow tailoring of the relationships between voltage, force, and displacement
- Electrostatic forces can become very large when dimensions shrink \rightarrow electrostatics scales well!
- Same capacitive structures can be used for both drive and sense of velocity or displacement
- Simplicity of transducer greatly reduces mechanical energy losses, allowing the highest Q's for resonant structures

EE C245: Introduction to MEMS Design

LecM 1

C. Nguyen

11/18/0

15

Problems With Electrostatic Actuators

- * Nonlinear voltage-to-force transfer function
- Relatively weak compared with other transducers (e.g., piezoelectric), but things get better as dimensions scale

EE C245: Introduction to MEMS Design

LecM 12

C. Nguyen

/08

Parallel-Plate Capacitive Nonlinearity

"Thus, the expression for force from the left side becomes:

$$F_{d1} = \frac{1}{2} \frac{\partial \mathcal{L}}{\partial x} (V_{p} - V_{1} - N_{1})^{2} = \frac{1}{2} \frac{\partial \mathcal{L}}{\partial x} (V_{p_{1}} - N_{1})^{2}$$

$$\begin{cases} \text{Small displacements}: & x \ll d_{1} \\ F_{d1} = \frac{1}{2} \left(-\frac{C_{01}}{d_{1}} \right) \left(1 + A_{1} x \right) \left(V_{p_{1}}^{2} - 2 V_{p_{1}} N_{1} + N_{1}^{2} \right) \\ = \frac{1}{2} \left(-\frac{C_{01}}{d_{1}} \right) \left\{ V_{p_{1}}^{2} - 2 V_{p_{1}} N_{1} + N_{1}^{2} \right\} \\ \text{@ resonance}: & x = \frac{\partial F_{d1}}{\partial x} \cong \frac{\partial}{\partial x} V_{p_{1}} N_{1} \\ \text{Thus:} & N_{1} : |N_{1}| \cos \omega_{0} \leftarrow x : |x| \sin \omega_{0} t \\ & x = 90^{\circ} \text{ phase-shifted from } N_{1} \end{cases}$$

EE C245: Introduction to MEMS Design

Lec M 12

Conductive Structure

Conductive Structure

Electrode

$$\sqrt{k_{m}}$$

$$\sqrt{k_{m}} = \sqrt{k_{m}}$$

$$\sqrt{k_{m}} = \sqrt{k_{m}} = \sqrt{k_{m}}$$

**Comb-Drive Force Equation (2nd Pass)

*In our 1st pass, we accounted for

**Parallel-plate capacitance between stator and rotor

*... but neglected:

**Fringing fields

**Capacitance to the substrate

*All of these capacitors must be included when evaluating the energy expression!

Stator

Rotor

Ground Plane

Plane

Plane

**Parallel-plate capacitance between stator and rotor

**In our 1st pass, we accounted for

**Parallel-plate capacitance between stator and rotor

**In our 1st pass, we accounted for

Ground Plane

**Parallel-plate capacitance between stator and rotor

**In our 1st pass, we accounted for

Ground Plane

**Parallel-plate capacitance between stator and rotor

**In our 1st pass, we accounted for

Ground Plane

**Parallel-plate capacitance between stator and rotor

**In our 1st pass, we accounted for

Ground Plane

**Parallel-plate capacitance between stator and rotor

**In our 1st pass, we accounted for

Ground Plane

**Parallel-plate capacitance between stator and rotor

**In our 1st pass, we accounted for

Ground Plane

**Parallel-plate capacitance between stator and rotor

**In our 1st pass, we accounted for

Ground Plane

**Parallel-plate capacitance between stator and rotor

**In our 1st pass, we accounted for

Ground Plane

**Parallel-plate capacitance between stator and rotor

