Lecture Outline

- Reading: Senturia, Chpt. 6, Chpt. 14
- Lecture Topics:
 - Input Modeling
 - Input Equivalent Ckt.
 - Current Modeling
 - Output Current Into Ground
 - Input Current
 - Complete Electrical-Port Equiv. Ckt.
 - Impedance & Transfer Functions
Input Modeling

Electromechanical Analogies

Equation of Motion:
\[m_{eq} \ddot{x} + c_{eq} \dot{x} + k_{eq} x = F(t) \]

\[N(t) \rightarrow \text{Voltage} \]

Impedance looking in:
\[\frac{N}{i} = \frac{jω i + \frac{i}{jω} + r_x}{1 + jω L + \frac{jω}{C} + r_x} \]

\[N = jω L i + \frac{ω C}{jω} i + r_x i \]

Parameter Relationships in the Current Analogy:
\[F \rightarrow N \quad m_{eq} \rightarrow l_x \quad c_{eq} \rightarrow r_x \]
\[x \rightarrow i \quad k_{eq} \rightarrow \frac{1}{C_x} \]
Bandpass Biquad Transfer Function

\[F(s) = \frac{X(j\omega)}{s^2 + \omega_0^2 + \frac{Q}{Q_0}s + \omega_0^2} \]

Force-to-Velocity Relationship

- The relationship between input voltage \(v_i \) and force \(F_{d1} \):
 \[F_{d1} \approx -V_P \frac{\partial C_i}{\partial x} v_i \]

- When displacement \(x \) is the mechanical output variable:
 \[\frac{X(s)}{F_{d1}(s)} = \frac{1}{k s^2 + (\omega_0/Q)s + \omega_0^2} \]

- When velocity \(v \) is the mechanical output variable:
 \[\frac{v(s)}{F_{d1}(s)} = \frac{sX(s)}{F_{d1}(s)} = \frac{1}{k s^2 + (\omega_0/Q)s + \omega_0^2} \]
Force-to-Velocity Equiv. Ckt.

- Combine the previous lumped LCR mechanical equivalent circuit with a circuit modeling the capacitive transducer → circuit model for voltage-to-velocity.

Equiv. Circuit for a Linear Transducer

- A transducer ...
 - converts energy from one domain (e.g., electrical) to another (e.g., mechanical)
 - has at least two ports
 - is not generally linear, but is virtually linear when operated with small signals (i.e., small displacements)
Equiv. Circuit for a Linear Transducer

For physical consistency, use a transformer equivalent circuit to model the energy conversion from the electrical domain to mechanical domain.

\[
\begin{bmatrix}
 e_2 \\
 f_2
\end{bmatrix} = \begin{bmatrix}
 \eta & 0 \\
 0 & -\frac{1}{\eta}
\end{bmatrix} \begin{bmatrix}
 e_1 \\
 f_1
\end{bmatrix}
\]

Describing Matrix

Electromechanical Equivalent Circuit

- \(e_2 = F_{d1} \), \(e_1 = v_1 \), just need \(\eta_1 \):
- From the matrix: \(e_2 = \eta e_1 \)

\[
F_{d1} \approx -V_P \frac{\partial C_1}{\partial x} v_1 \rightarrow \eta_1 = V_P \frac{\partial C_1}{\partial x}
\]
Output Modeling

Output Current Into Ground

• When the mass moves with time-dependent displacement $x(t)$, the electrode-to-mass capacitors $C_1(x,t)$ and $C_2(x,t)$ vary with time.

• This generates an output current:

$$i_1 = \frac{d}{dt} \left[\frac{q}{C} \right] + C_1 \frac{d^2 x}{dt^2} + V \frac{d^2 x}{dt^2}$$

$$i_2(t) = C_2(x,t) \frac{dV_1(t)}{dt} + V_1(t) \frac{dC_2(x,t)}{dt}$$

$$\left[V(t) - V_P \right] = I_2 - V_P \frac{dC_2}{dt} - V_P \frac{dC_2}{dx} \frac{dx}{dt}$$

In phasor form:

$$I_2(j\omega) = -j\omega V_P \frac{dC_2}{dx} x$$
Output Current Into Ground

Again, model with a transformer:

\[I_2(j\omega) = -j\omega V_p \frac{\partial c_2}{\partial x} x = -V_p \frac{\partial c_2}{\partial x} U \]

90° phase lag

\[\phi(\omega) \rightarrow I_2 = 0 \text{ when } x = 0 \]

\[f_x = \frac{1}{\eta_2} f_1 \rightarrow f_2 = -\eta_2 f_1 \]

\[f_1 \rightarrow I_2; f_2 : U \Rightarrow I_2 = -\eta U \]

\[x \times \frac{\partial f_x}{\partial x} \]

Input Current Expression

Get \(I_c(j\omega) \):

\[i_c(j\omega) = C_1 \frac{dx}{dt} + V_1 \frac{dC_1}{dx} \frac{x}{dt} \]

\[[V_1 \cdot \frac{dx}{dt} - V_p] \rightarrow i_c = C_1 \frac{dx}{dt} + [V_1 - V_p] \frac{dx}{dt} - x \frac{dx}{dt} \]

\[\Rightarrow I_c(j\omega) = C_1 V_1 \frac{dx}{dt} + jwV_1 \frac{dx}{dt} = \frac{x}{dx} \]

\[[V_1 \ll V_p] \Rightarrow I_c(j\omega) = jwC_1 V_1 - jwV_p \frac{dx}{dx} \]

\[\text{Feed-through Current} \quad \text{Motional Current} \]

\[\phi(\omega) \rightarrow \text{due to mass motion} \]

\[\text{at DC: } x = \frac{F_{dc}}{k} = \frac{1}{k} V_p \frac{\partial c_2}{\partial x} V_i \]

\[\text{at resonant: } \frac{\omega}{\phi} = \frac{\phi_{dc}}{j} = \frac{1}{j \omega V_p \frac{\partial c_2}{\partial x} V_i} \]

\[\phi(\omega) \rightarrow \text{90° phase lag} \]
Input Current Expression (cont)

Thus: @ resonance

\[I_1(j\omega) = j\omega C_1 V_1 + j\omega_0 \left(\frac{\partial C_1}{\partial x} \right) \frac{Q}{jk} V_1 \]

\[= j\omega C_1 V_1 + \omega_0 \frac{Q}{k} n_1^2 V_1 \]

+ 90° phase shifted from \(V_1 \)

This is a capacitance in shunt with the input to Electrode 1

- \(C_2 \):

Motional Resistance:

\[R_{x1} V_1 \frac{d}{dt} = \frac{k}{\omega_0 n_1^2} \]

\[\Rightarrow \eta_{e1} = \frac{C_{ol}}{d_1} \]

The equivalent ckt. behavior gets this right!

Complete Electrical-Port Equiv. Circuit

Static electrode-to-mass overlap capacitance

\[\eta_{e1} = V_p \frac{\partial C_1}{\partial x} = V_p \frac{C_{ol}}{d_1} \]

\[\eta_{e2} = V_p \frac{\partial C_2}{\partial x} = V_p \frac{C_{ol}}{d_2} \]

\[l_x = m \]

\[c_x = \frac{1}{k} \]

\[r_x = b \]
Input Impedance Into Port 1

What is the impedance seen looking into port 1 with port 2 shorted to ground?

From our transformer model:

\[
\begin{align*}
\frac{e_1}{i_1'} &= \frac{1}{\eta} \left[\begin{array}{c} e_2 \\ f_1 \\ \eta_1 \\ \eta_2 \\ f_2 \end{array} \right] \\
&= \frac{1}{\eta} \left[\begin{array}{c} \eta e_1 \\ f_1 \\ \eta_1 e_1 \\ \eta_2 e_1 \\ f_2 \end{array} \right] \\
&= \frac{1}{\eta} \cdot \frac{1}{\eta_2} \left(j \omega C_x + \frac{1}{j \omega C_x} + r_x \right) \\
&= j \omega \left(\frac{L_x}{\eta^2} \right) + \frac{1}{j \omega (\eta_2 C_x)} + \frac{r_x}{\eta_2} \frac{1}{R_{x2}}.
\end{align*}
\]

Input Impedance Into Port 2

What is the impedance seen looking into port 2 with port 1 shorted to ground?

\[
\begin{align*}
\frac{e_2}{i_2'} &= 2 \cdot \frac{1}{\eta_2} \left(j \omega L_x + \frac{1}{j \omega C_x} + r_x \right) \\
&= j \omega \left(\frac{L_x}{\eta^2} \right) + \frac{1}{j \omega (\eta_2 C_x)} + \frac{r_x}{\eta_2} \frac{1}{R_{x2}}.
\end{align*}
\]

Note: They are not the same as \(L_x, C_x \), \(R_{x2} \) on Port 1.
Port 1 to 2 TransG Across the Circuit

What is the transconductance from port 1 to port 2 with port 2 shorted to ground?

\[\eta_e^{1 \to 2} = \frac{I_2}{V_2} \]

\[\eta_e^{1 \to 2} = \frac{1}{R_x} \left\{ \frac{1}{\eta_{c1}} \left[\frac{1}{\eta_{c1}} + \frac{1}{\eta_{c2}} + j\omega C \right] \right\} \]

Port 1 to 2 \(v_1 \)-to-\(i_o \) Transfer Function

\[\frac{I_o}{V_1}(s) = \frac{1}{sC_x + \frac{1}{sC_x} + R_x} \]

Separate freq response & magnitude:

\[\frac{I_o}{V_1}(s) = \frac{sC_x}{s^2C_x + s(\omega_0/R_x) + \omega_0^2} \]

\[\frac{1}{sC_x} = \omega_0^2, \quad Q = \frac{\omega_0}{R_x}, \quad R_x = \frac{1}{sC_x} \]

\[\frac{I_o}{V_1}(s) = \frac{\omega_0^2}{s^2 + s(\omega_0/R_x) + \omega_0^2} \]

\[\Re(s) = \frac{\omega_0^2}{s^2 + s(\omega_0/R_x) + \omega_0^2} \]

\[\Im(s) = \left[\frac{\omega_0^2}{s^2 + s(\omega_0/R_x) + \omega_0^2} \right] \]

\[\omega_0 = \Re(s) = 0 \]

\[s = j\omega_0 \Rightarrow \Im(s) = \omega_0 \]

\[s = 0 \Rightarrow \Re(s) = 0 \]

Gain Bandpass Biquad

This will always be the same.

Thus, could just work @ resonant frequency and just multiply by \(\Re(s) \).
Condensed Equiv. Circuit (Symmetrical)

Holds for the symmetrical case, where port 1 and port 2 are identical.

If \(\eta_1 = \eta_2 \), then ...

\[
\begin{align*}
L_x &= \frac{m}{\eta_e^2} \\
C_x &= \frac{\eta_e^2}{k} \\
R_x &= \frac{b}{\eta_e^2}
\end{align*}
\]

Phasings of Signals

Below: plots of resonance electrical and mechanical signals vs. time, showing the phasings between them