Module 16: Sensing Non-Idealities & Integration

Lecture Outline

* Reading: Senturia Chpt. 14, 15
* Lecture Topics:
 - Ideal Op Amps
 - Op Amp Non-Idealities
 - MEMS-Transistor Integration
 - Mixed
 - MEMS-First
 - MEMS-Last
 - Op Amp Non-Idealities (cont.)
Ideal Operational Amplifiers

Equivalent Circuit of an Ideal Op Amp:

- Single-ended output
- Differential input
- Voltage-Controlled Voltage Source (VCVS)

*Properties of Ideal Op Amps:

1. \(R_{\text{in}} = \infty \)
2. \(R_0 = 0 \)
3. \(A = \infty \)
4. \(i_+ = i_- = 0 \)
5. \(v_+ = v_- \), assuming \(v_0 \) is finite

Why?
Ideal Op Amp (cont)

* Properties of Ideal Op Amps:
 1. \(R_{in} = \infty \)
 2. \(R_0 = 0 \)
 3. \(A = \infty \)
 4. \(i_+ = i_- = 0 \)
 5. \(v_+ = v_- \), assuming \(v_0 = \text{finite} \)

Why? Because for \(\infty(v_+ - v_-) = v_0 = \text{finite} \)
\[\therefore v_+ - v_- = 0 \rightarrow v_+ = v_- \]
\[v_0 \rightarrow \text{virtual short circuit (virtual ground)} \]

* Big assumption! \((v_0 = \text{finite}) \)

* How can we assume this? We can assume this only when there is an appropriate negative feedback path!

Inverting Amplifier

1. Verify that there is negative FB.
2. \(\therefore v_0 = \text{finite} \rightarrow v_+ = v_- \rightarrow \) node attached to (-) terminal is virtual ground.
3. \(i_- = 0 \rightarrow i_1 = i_2 \)

\[
\begin{align*}
 i_1 &= \frac{v_i - 0}{R_1} = \frac{v_i}{R_1} = i_2 \\
 v_0 &= 0 - i_2 R_2 = -i_2 R_2 \\
 \therefore v_0 &= -\left(\frac{v_i}{R_1}\right)R_2 = -\frac{R_2}{R_1} v_i \\
 v_0 &= -\frac{R_2}{R_1} v_i = \frac{-R_2}{R_1} \\
\end{align*}
\]

Benefit: Any shunt \(C \) at this node will be grounded out.

NOTE: Gain dependent only on \(R_1 \) & \(R_2 \) (external components), not on the op amp gain.
Transresistance Amplifier

- Take R_1 away

![Transresistance Amplifier Diagram]

1. Verify that there is neg. FB \rightarrow yes, since same FB as inverting amplifier
2. Thus, $v_o = \text{finite} \rightarrow v_+ = v_-$ \rightarrow (-) terminal is virtual ground
3. $i_- = 0 \rightarrow i_1 = i_2$

$$v_0 = -i_2R_2 = -i_1R_2 \Rightarrow \frac{v_0}{i_1} = -R_2$$

An inverting amplifier is just a transresistance amplifier with an R_1 to convert voltage to current!

Integrator-Based Diff. Position Sensing

$$\frac{v_o}{i_0} = \frac{V_p}{C_F}$$

$$\frac{v_o}{i_0} = -1 \left(\frac{C_F}{2C_2} \right) - \left(\frac{C_1 - C_2}{C_F} \right)$$

$$\Rightarrow A \text{ seemingly perfect differential sensor/amplifier output!... but only when the op amp is ideal...}$$
Non-Ideal Operational Amplifiers

Actual Op Amps Are Not Ideal

* Actual op amps, of course, are not ideal; rather, they...
 - Generate noise
 - Have finite gain, A_o
 - Have finite bandwidth, ω_b
 - Have finite input resistance, R_i
 - Have finite input capacitance, C_i
 - Have finite output resistance, R_o
 - Have an offset voltage V_{OS} between their (+) and (-) terminals
 - Have input bias currents
 - Have an offset I_{OS} between the bias currents into the (+) and (-) terminals
 - Have finite slew rate
 - Have finite output swing (governed by the supply voltage used, $-L$ to $+L$)

* And what's worse: All of the above can be temperature (or otherwise environmentally) dependent!
Finite Op Amp Gain and Bandwidth

- For an ideal op amp: \(A = \infty \)
- In reality, the gain is given by: \(A(s) = \frac{A_0}{s} \) \[A_0 \]
- For \(\omega \gg \omega_b \):
 \[A(s) = \frac{A_0}{s} = \frac{A_0 \omega_b}{\omega_b} \] Integrator w/ time const. \(1/\omega_T \)

This pole actually designed in for some op amps.

Open-loop response of the amplifier.

Unity gain frequency: \(\omega_T = A_0 \omega_b \)

3 dB frequency

Finite Op Amp Gain and Bandwidth

Effect of Finite Op Amp Gain

Total ADXL-50 Sense C ~ 100fF

\[V_p \]

Unity Gain Buffer

\[C_p \]

\[C_{gd} \]

\[V_0 \]
Integration of MEMS and Transistors

Integrate or Not?

• Benefits:
 - Lower parasitic capacitance and resistance → improved sensitivity and resolution, higher operation frequency
 - Better reliability
 - Reduced size → lower cost?
 - Reduced packaging complexity → integration is a form of packaging → lower cost?
 - Higher integration density supports greater functionality

• Challenges:
 - Temperature ceilings imposed by the transistors or MEMS
 - Protecting one process from the other
 - Surface topography of MEMS
 - Material incompatibilities
 - Multiplication of yield losses (versus non-integrated)
 - Acceptance by transistor foundries
• Mixed:
 - problem: multiple passivation/protection steps ⇒ large number of masks required
 - problem: custom process for each product

• MEMS-first or MEMS-last:
 - adv.: modularity ⇒ flexibility ⇒ less development time
 - adv.: low pass./protection complexity ⇒ fewer masks

28 masks and a lot more complicated than MEMS!
Analog Devices BiMEMS Process

- Interleaved MEMS and 4 μm BiMOS processes (28 masks)
- Diffused n+ runners used to interconnect MEMS & CMOS
- Relatively deep junctions allow for MEMS poly stress anneal
- Used to manufacture the ADXL-50 accelerometer and Analog Devices family of accelerometers

Analog Devices BiMEMS Process (cont)

- Examples:

 Old → **New**

 Analog Devices ADXL 78
 Analog Devices ADXL-202 Multi-Axis Accelerometer

- Can you list the advances in the process from old to new?
Merged MEMS/Transistor Technologies (Process Philosophy)

- Mixed:
 - Problem: multiple passivation/protection steps ⇒ large number of masks required
 - Problem: custom process for each product
- MEMS-first or MEMS-last:
 - Adv.: modularity ⇒ flexibility ⇒ less development time
 - Adv.: low pass./protection complexity ⇒ fewer masks

MEMS-First Integration

- Modular technology minimizes product updating effort
 - Module 1: micromachining process (planar technology)
 - Module 2: transistor process (planar IC technology)
- Adv.: (ideally) no changes needed to the transistor process
- Adv.: high temperature ceiling for some MEMS materials
- Challenges:
 - Reducing topography after MEMS processing so transistors can be processed
 - Maximizing the set of permissible MEMS materials; the materials must be able to withstand transistor processing temperatures
 - Getting transistor foundries to accept pre-processed wafers
MEMS-First Integration

- Problem: μstructural topography interferes with lithography & difficult to apply photoresist for submicron circuits

- Soln.: build μmechanics in a trench, then planarize before circuit processing [Smith et al., IEDM'95]

MEMS-First Ex: Sandia's iMEMS

- Used to demonstrate functional fully integrated oscillators
- Issues:
 - lithography and etching may be difficult in trench → may limit dimensions (not good for RF MEMS)
 - μmechanical material must stand up to IC temperatures (>1000°C) → problem for some metal materials
 - might be contamination issues for foundry IC's [Smith et al., IEDM'95]
Bosch/Stanford MEMS-First Process

- Single-crystal silicon microstructures sealed under epi-poly encapsulation covers
- Many masking steps needed, but very stable structures

![Diagram of Bosch/Stanford MEMS-First Process](image)

Problems With MEMS-First

- Many masking steps needed, plus CMP required → cost can grow if you're not careful
- Processes using trenches sacrifice lithographic resolution in microstructures
- MEMS must withstand transistor processing temperatures
 - Precludes the use of structural materials with low temperature req'ts: metals, polymers, etc.
- Exotic MEMS (e.g., ZnO) that can contaminate transistors during their processing are not permissible
 - thus, not truly modular
- Foundry acceptance not guaranteed and might be rare
Foundry Acceptance of MEMS-First?

- Is a CMP'ed silicon surface sufficiently pure for fabrication of aggressively scaled transistors? How about if an oxide is grown over the CMP'ed surface and removed via a wet etch to yield a “pristine” surface?
- Is epi silicon grown as part of a sealing process sufficiently pure for fabrication of aggressively scaled transistors?
- CMOS is many times more difficult to run than MEMS
 - Feature sizes on the nm scale for billions of devices
 - Contamination a big issue: many foundries may not accept pre-processed wafers for contamination reasons
 - Many foundries will not accept any pre-processed wafers, MEMS or not → just can’t guarantee working transistor circuits with unknowns in starting silicon

Merged MEMS/Transistor Technologies (Process Philosophy)

- Mixed:
 - problem: multiple passivation/protection steps ⇒ large number of masks required
 - problem: custom process for each product
- MEMS-first or MEMS-last:
 - adv.: modularity ⇒ flexibility ⇒ less development time
 - adv.: low pass./protection complexity ⇒ fewer masks
• Modular technology minimizes product updating effort
 • Module 1: transistor process (planar IC technology)
 • Module 2: micromachining process (planar technology)
• Adv.: foundry friendly
 • Virtually any foundry can be used → can use the lowest cost transistor circuits (big advantage)
• Adv.: topography after circuit fabrication is quite small, especially given the use of CMP to planarize the metallization layers
• Issue: limited thermal budget limits the set of usable structural materials
 • Metallization goes bad if temperature gets too high
 • Aluminum grows hillocks and spikes junctions if T>500°C
 • Copper diffusion can be an issue at high temperature
 • Low-k dielectrics used around metals may soon lower the temperature ceiling to only 320°C

Berkeley Polysilicon MICS Process
• Uses surface-micromachined polysilicon microstructures with silicon nitride layer between transistors & MEMS
 • Polysilicon dep. T~600°C; nitride dep. T~835°C
 • 1100°C RTA stress anneal for 1 min.
 • metal and junctions must withstand temperatures ~835°C
 • tungsten metallization used with TiSi₂ contact barriers
 • in situ doped structural polySi; rapid thermal annealing
Surface Micromachining

- Fabrication steps compatible with planar IC processing

Single-Chip Ckt/MEMS Integration

- Completely monolithic, low phase noise, high-Q oscillator (effectively, an integrated crystal oscillator)
- To allow the use of >600°C processing temperatures, tungsten (instead of aluminum) is used for metallization

[Nguyen, Howe 1993]
Usable MEMS-Last Integration

- **Problem**: tungsten is not an accepted primary interconnect metal
- **Challenge**: retain conventional metallization
 - minimize post-CMOS processing temperatures
 - explore alternative structural materials (e.g., plated nickel, SiGe [Franke, Howe et al., MEMS'99])
 - Limited set of usable structural materials → not the best situation, but workable

Poly-SiGe MICS Process

- **MICS** = “Modular Integration of Circuits and Structures”
- **MEMS**-last process, where SiGe micromechanics are planar processed directly above conventional foundry circuits
 - enabled by lower deposition temperature of SiGe ~450°C
 - **Adv.**: alleviates contamination issues of pre-circuit processes, allowing a wider choice of IC technologies
Polysilicon Germanium

- Deposition
 - LPCVD thermal decomposition of GeH₄ and SiH₄ or Si₂H₆
 - Rate >50 Å/min, T < 475°C, P = 300-600 mT
 - At higher [Ge]: rate ↑, T ↓
 - In-situ doping, ion implantation

- Dry Etching
 - Similar to poly-Si, use F, Cl, and Br⁻ containing plasmas
 - Rate ~0.4 μm/min

- Wet Etching
 - H₂O₂ @ 90°C: can get 4 orders of magnitude selectivity between >80% and <60% Ge content
 - Good release etchant

Poly-SiGe Mechanical Properties

- Conformal deposition
- Low as-deposited stress (when it's done right)
- Young's modulus ~ 146 GPa (for poly-Si₀.₃₅Ge₀.₆₅)
- Density ~4280 kg/m³
- Acoustic velocity ~5840 m/s (25% lower than polysilicon)
- Harder to achieve high frequency devices
- Fracture strain 1.7% (compared to 1.5% for MUMPS polySi)
- Q=30,000 for n-type poly-Ge in vacuum
UCB Poly-SiGe MICS Process

- 2 μm standard CMOS process w/ Al metallization
- P-type poly-Si$_{0.35}$Ge$_{0.65}$ structural material; poly-Ge sacrificial material
- Process:
 - Passivate CMOS w/ LTO @ 400°C
 - Open vias to interconnect runners
 - Deposit & pattern ground plane
 - RTA anneal to lower resistivity (550°C, 30s)

ASIMPS Ckt/MEMS Integration Process

- MEMS constructed from metal/insulator laminates of foundry CMOS
- Top metal layer used as etch mask for CHF$_3$/O$_2$ oxide etch
- Structures released via a final SF$_6$ isotropic dry etch
- Independent electrostatic actuation possible due to multiple insulated metal layers
- Stress issues can be tricky
 - Must design defensively against warping
ASIMPS Ckt/MEMS Integration Process

* Direct integration of Al/oxide MEMS structure with silicon CMOS or SiGe BiCMOS circuits
* Multiple electrodes within structures
* Derivatives for bulk silicon structures

![Composite Beam](Image)

CMOS Transistor

Etched Pit

Silicon Substrate

Stator Electrodes

Gyro Resonator

Uncooled IR Detector Element

Actual Op Amps Are Not Ideal

• Actual op amps, of course, are not ideal; rather, they ...
 - Generate noise
 - Have finite gain, A_0
 - Have finite bandwidth, ω_b
 - Have finite input resistance, R_i
 - Have finite input capacitance, C_i
 - Have finite output resistance, R_o
 - Have an offset voltage V_{OS} between their (+) and (-) terminals
 - Have input bias currents
 - Have an offset I_{OS} between the bias currents into the (+) and (-) terminals
 - Have finite slew rate
 - Have finite output swing (governed by the supply voltage used, $-L$ to $+L$)

• And what's worse: All of the above can be temperature (or otherwise environmentally) dependent!
Finite Op Amp Gain and Bandwidth

- For an ideal op amp: \(A = \infty \)
- In reality, the gain is given by: \(A(s) = \frac{A_0}{s + \frac{1}{\omega_b}} \)
- For \(\omega > > \omega_b \):
 \[
 A(s) = \frac{A_0}{j\omega} = \frac{A_0\omega_b}{\omega} = \frac{\omega_T}{\omega_b} \]
 This pole actually designed in for some op amps.
 Open-loop response of the amplifier.

\[
20 \log(A_0)\]

\[
\omega_b \quad \omega \quad \omega_T
\]

Unity gain frequency: \(\omega_T = A_0\omega_b \)

\[20\text{dB/dec}\]

\[3\text{ dB frequency}\]

Op Amp Non-Idealities

Op Amp Non-Idealities \(\rightarrow R_i \) & \(R_0 \)

Input resistance \(R_i \) and Output Resistance \(R_0 \):

With finite \(R_i \) and \(R_0 \), and finite gain and BW, the op amp equivalent circuit becomes:

\[
V_0 = A_i (v_+ - v_-)
\]

\[
\frac{1}{R_0C_0}
\]

\[w_b = \]

Basically reduces down to a voltage-amplifier model.

Add an output \(C_0 \) model a single pole response, where
Back to Op Amp Non-Idealities

Input Offset Voltage V_{0S}

- **Input Offset Voltage, V_{0S}**:

 - **Ideal case**: $v_0 = 0$
 - **Reality**: $v_0 \neq 0$ (usually, $v_0 = L^+$ or L^-: it rails out!)

 Why? Internal mismatches within the op amp cause a dc offset. Model this with an equivalent input offset voltage V_{0S}.

 Typically, $V_{0S} = 1\text{mV} - 5\text{mV}$
Effect of V_{0S} on Op Amp Circuits

Example: Non-Inverting Amplifier

\[V_0 = V_{0S} \left(1 + \frac{R_2}{R_1} \right) \]

E.g., \(\frac{R_2}{R_1} = 9 \), \(V_{0S} = 5mV \), then \(V_0 = 50mV \)

(not so bad ...)

Effect of V_{0S} on Op Amp Circuits (cont.)

Example: Integrator

To fix this, place a resistor in shunt with the \(C \) then:

\[v_0 = V_{0S} \left(1 + \frac{R_f}{R} \right) \]

\[v_0 = V_{0S} + \frac{1}{C} \int_0^t i \, dt \]

\[= V_{0S} + \frac{1}{C} \int_0^t V_{0S} \, dt \]

\[= V_{0S} \left(1 + \frac{t}{RC} \right) + v_C \big|_{t=0} \]

Will continue to increase until op amp saturates