

EE C247B - ME C218 Introduction to MEMS Design Spring 2018

Prof. Clark T.-C. Nguyen

Dept. of Electrical Engineering & Computer Sciences
University of California at Berkeley
Berkeley, CA 94720

Lecture Module 4: Lithography, Etching, & Doping

E C245: Introduction to MEMS Design

LecM .

C. Nguyer

8/20/09

UG Berkeley

Lecture Outline

- Reading: Senturia, Chpt. 3; Jaeger, Chpt. 2, 4, 5
 - **♦** Lithography
 - **⇔** Etching
 - Wet etching
 - Dry etching
 - **♦** Semiconductor Doping
 - ◆ Ion implantation
 - Diffusion

E COAE, Introduction to MEMC Design

LecM 4

C. Nguyen

8/20/09

Wet Etching Limitations

UC Berkeley

- 1. Isotropic
 - \$Limited to <3µm features
 - ♥ But this is also an advantage of wet etching, e.g., if used for undercutting for MEMS
- 2. Higher cost of etchants & DI water compared w/ dry etch gas expenses (in general, but not true vs. deep etchers)
- 3. Safety
 - ♦ Chemical handling is a hazard
- 4. Exhaust fumes and potential for explosion
 - Need to perform wet etches under hood
- 5. Resist adhesion problems
 - ♦ Need HMDS (but this isn't so bad)

E C245: Introduction to MEMS Design

LecM .

C. Nguyen

8/20/0

25

		Wet-Etch									F // }_				and N	4.5	
The top etch rate was measured by the authors with fres	solutions, sac. Th	oction and	hottons	ratees are t	the low a	nd high o	nch mass o	ibserved t		ors and of	ers in our	lab under l	less carefu	Dy contr	clied con-	inices.	
ETCHANT EQUIPMENT CONDITIONS	TARGET MATERIAL	SC Si <100o	Poly	Poly	Wet	Dry Ox	LTO	PSG ward	PSG	Stoic Nitrid	Low-cr Nitrid	Al/ 2% Si	Spot Tung	Sput	Spot T/W	OCG 820FR	Otio
Concentrated HF (49%) Concentrated HF (49%) Rosen Temperature	Silicon oxides	-	0		23k 18k 23k	F	>14	F	Mik	140	52 30 52	42 0 42	- 30	F	-	PO	Р
10.1 HF Wet Sink Room Temperature	Silicon oxides.		7	0	230	230	340	15k	4700	п	3	2500 2500 12k	0	Hk	<70	0	
25:1 HF Wet Sink Room Temperature	Silicon oxides		0	U	97	95	150	w	1500	6	1	w	0			0	
5:3 BHF Wet Sink Roam Temperature	Silicon vaidea		9	2	1000 900 1050	1000	1200	6800	4400 3500 4400	,	4 3 4	1400	<20 0.25 20	P.	(000	0	
Phosphoric Acid (85%) Housed Buth with Reflux 160°C	Silicon nitridea	. 83	7	13	0.7	0.3	ĸi	37	24 9 24	28 28 42	19 19 42	9800	-			550	35
Silicon Extern (126 HNO ₃ : 60 H ₂ O : 5 NH ₂ F) Wet Sinit Koom Temperature	Sticon	1500	3100 1200 5000	1000	87	w	116	4000	1700	2	3	4000	130	3000		0	
KOH (1 KOH : 2 H ₂ O by weight) Hexaed Stirred Bath 80°C	<100> Silions	14k	>10k	r	77 41 77	*	94	w	380		0	h	0	2		F	
Aluminum Buhare Type A (16 H ₂ PO ₂ : 1 HNO ₃ : 1 HAc : 2 H ₂ O) Hound Buth SO'C	Alementors		<10	49	0	0	0		<10	0	2	6600 2600 6600	-	0		0	
Titanum Birthani (20 H ₂ O : 1 H ₂ O ₂ : 1 HF) Wet Sink Room Temperature	Trusium		12		120	w	w	w	2100		4	w	0 0 <10	8800		0	
H ₁ O ₂ (39%) Wet Sink Room Temperature	Tangsien		0	0	0	0	0	0	0	0	0	<20	190 190 1000	0	60 60 150	a	
Piranha (~50 H_SO _a : 1 M_O _a) Houted Bath 150°C	Cleaning off metals and organics	-	0	0	0	0	0		0	0	0	1800	-	2400		F	
Acresse Wee Sink Rosen Terropeniture	Photoresist		0	0	0	0	0		.0	0	0	0	*	0		>412	>36

For some popular films:									
laterial Wet etchant		Etch rate [nm/min]	Dry etchant	Etch rate [nm/min]					
Polysilicon	HNO ₃ :H ₂ O: NH ₄ F	120-600	SF ₆ + He	170-920					
Silicon nitride	H ₃ PO ₄	5	SF ₆	150-250					
Silicon dioxide	HF	20-2000	CHF ₃ + O ₂	50-150					
Aluminum	H ₃ PO ₄ :HNO ₃ : CH ₃ COOH	660	Cl ₂ + SiCl ₄	100-150					
Photoresist	Acetone	>4000	O ₂	35-3500					
Gold	KI	40	n/a	n/a					

UC Berkeley

Reactive Ion Etching (RIE)

- Use ion bombardment to aid and enhance reactive etching in a particular direction
 - ♦ Result: directional, anisotropic etching!
- * RIE is somewhat of a misnomer
 - ♦ It's not ions that react ... rather, it's still the neutral species that dominate reaction
 - Signs just enhance reaction of these neutral radicals in a specific direction
- * Two principle postulated mechanisms behind RIE
 - 1. Surface damage mechanism
 - 2. Surface inhibitor mechanism

E C245: Introduction to MEMS Design

LecM ·

C. Nguyen

8/20/0

43

UC Berkeley

Doping of Semiconductors

- Semiconductors are not intrinsically conductive
- To make them conductive, replace silicon atoms in the lattice with dopant atoms that have valence bands with fewer or more e-'s than the 4 of Si
- If more e-'s, then the dopant is a donor: P, As
 - The extra e is effectively released from the bonded atoms to join a cloud of free e's, free to move like e's in a metal

 Extra free e

 $\$ The larger the # of donor atoms, the larger the # of free e⁻¹s \rightarrow the higher the conductivity

E C245: Introduction to MEMS Design

LecM 4

C. Nguyen

8/20/09

Doping of Semiconductors (cont.) UC Berkeley charge magnitude Conductivity Equation: / on an electron electron hole density mobility density mobility • If fewer e-'s, then the dopant is an acceptor: B : Si : Si : Si : B : Si : .. 0. .. : Si : Si : Dope : Si :/Si : Si : Lack of an e⁻ = hole = h⁺ ♦ When e-'s move into h+'s, the h+'s effectively move in the opposite direction \rightarrow a h⁺ is a mobile (+) charge carrier

Area under the impurity distribution curve

Implanted Dose =
$$Q = \int_{0}^{\infty} N(x) dx \left[ions / cm^{2} \right]$$

For an implant completely contained within the Si:

$$Q = \sqrt{2\pi} N_p \Delta R_p$$

Assuming the peak is in the silicon: (putting it in one-sided diffusion form) So we can track the dopant front during a subsequent diffusion step.

subsequent diffusion step.
$$N(x) = \frac{D_I/2}{\sqrt{\pi(Dt)_{eff}}} \exp\left[-\frac{\left(x - R_p\right)^2}{2\left(\Delta R_p\right)^2}\right], \text{ where } (Dt)_{eff} = \frac{\left(\Delta R_p\right)^2}{2}$$

<u>C245</u>: Introduction to MEMS Design

ecM 4

Nguyen

3/20/09

General Comments on Predeposition

- Higher doses only: $Q = 10^{13} 10^{16} \text{ cm}^{-2}$ (I/I is $10^{11} 10^{16}$)
- * Dose not well controlled: ± 20% (I/I can get ± 1%)
- Uniformity is not good

 - \$\pm\$ ± 2% w/ solid source
- * Max. conc. possible limited by solid solubility $\overset{\bullet}{\vee}$ Limited to ~10 20 cm $^{-3}$
 - \S No limit for I/I \rightarrow you force it in here!
- For these reasons, I/I is usually the preferred method for introduction of dopants in transistor devices
- But I/I is not necessarily the best choice for MEMS
 - \$I/I cannot dope the underside of a suspended beam
 - ♥ I/I yields one-sided doping → introduces unbalanced stress → warping of structures
- Thus, predeposition is often preferred when doping MEMS

<u>C245</u>: Introduction to MEMS Design

LecM 4

C. Nguyen

8/20/09

65

Two-Step Diffusion

UC Berkeley

- Two step diffusion procedure:
 - ♦ Step 1: predeposition (i.e., constant source diffusion)
 - ♥ Step 2: drive-in diffusion (i.e., limited source diffusion)
- For processes where there is both a predeposition and a drive-in diffusion, the final profile type (i.e., complementary error function or Gaussian) is determined by which has the much greater Dt product:
 - (Dt)_{predep} » (Dt)_{drive-in} ⇒ impurity profile is complementary error function
 - (Dt)_{drive-in} » (Dt)_{predep} ⇒ impurity profile is Gaussian (which is usually the case)

<u>E C245</u>: Introduction to MEMS Design

LecM

C. Nguyen

8/20/0

71

Successive Diffusions

- For actual processes, the junction/diffusion formation is only one of many high temperature steps, each of which contributes to the final junction profile
- Typical overall process:
 - 1. Selective doping

 - \bullet Drive-in/activation \rightarrow D₂t₂
 - 2. Other high temperature steps
 - (eg., oxidation, reflow, deposition) \rightarrow D₃t₃, D₄t₄, ...
 - ◆ Each has their own Dt product
 - 3. Then, to find the final profile, use

$$(Dt)_{tot} = \sum_{i} D_i t_i$$

in the Gaussian distribution expression.

EE C245: Introduction to MEMS Design

LecM 4

C. Nguyen

Expressions for x_j

Assuming a Gaussian dopant profile: (the most common case)

$$N(x_j, t) = N_o \exp \left[-\left(\frac{x_j}{2\sqrt{Dt}}\right)^2 \right] = N_B \rightarrow x_j = 2\sqrt{Dt \ln\left(\frac{N_o}{N_B}\right)}$$

• For a complementary error function profile:

$$N(x_j, t) = N_o \operatorname{erfc}\left(\frac{x_j}{2\sqrt{Dt}}\right) = N_B \rightarrow x_j = 2\sqrt{Dt} \operatorname{erfc}^{-1}\left(\frac{N_B}{N_o}\right)$$

E C245: Introduction to MEMS Design

UC Berkele

LecM 4

C. Nguyen

/20/09

