Lecture 14: Beam Combos I

- Announcements:
 - HW#4 online, due Tuesday, 3/19, 9 a.m.
 - Midterm Exam about 2 weeks away, Thursday, March 21, 11-12:30 p.m., 293 Cory (right here)

- Reading: Senturia, Chpt. 9

Lecture Topics:
- Bending of beams
- Cantilever beam under small deflections
- Combining cantilevers in series and parallel
- Folded suspensions
- Design implications of residual stress and stress gradients

Last Time:
- Working through stress gradients
- Continue with this

\[\sigma(x) = \begin{cases} \sigma_0 & \text{compression} \\ \sigma_x & \text{tension} \end{cases} \]

\[\sigma_{\text{before release}} = \begin{cases} \sigma_0 & \text{long range} \\ \sigma_x & \text{strain range} \end{cases} \]

\[\sigma_{\text{after release}} = \begin{cases} \sigma_0 & \text{tensile with respect to} \\ \sigma_x & \text{compress in substrate} \end{cases} \]
... and the result:

- Need to quantify this
Bending Due to Stress Gradient

Goal: Find the radius of curvature \(R \)

Prior to release, axial stress: \(\sigma_0 = \sigma_0 \frac{H}{(H/2)} \)

The internal moment:

\[
M_x = \int_{-H/2}^{H/2} (Wdx)z^2 = \int_{-H/2}^{H/2} (z^2 - \frac{\sigma_0 z^3}{(H/2)}) dz
\]

\[
= W \left(\frac{1}{2} \sigma_0 \frac{H^2}{4} - \frac{2}{3} \sigma_0 \frac{H^3}{8} - \frac{1}{2} \sigma_0 \frac{H^2}{4} - \frac{2}{3} \sigma_0 \frac{H^3}{8} \right)
\]

\[
= W \left(\frac{1}{2} \sigma_0 \frac{H^2}{4} - \frac{2}{3} \sigma_0 \frac{H^3}{8} - \frac{1}{2} \sigma_0 \frac{H^2}{4} - \frac{2}{3} \sigma_0 \frac{H^3}{8} \right)
\]

Thus, the radius of curvature:

\[
\frac{1}{R} = -\frac{M_x}{E'I} \rightarrow R = -\frac{E'I}{M_x} = -\frac{E'I}{\frac{1}{2} \sigma_0 \frac{H^2}{4}}
\]

Biaxial Modulus

\[
[I = \frac{1}{12} Wh^3]
\]

\[
R = \frac{E'}{1-\nu} \frac{H}{\sigma_0}
\]

Radius of Curvature

for a Cantilever \(w \) with Stress Gradient

\[
\frac{1}{R} \frac{E'}{1-\nu} \frac{H}{\sigma_0}
\]

Definition: Strain Gradient

\[
\Gamma = \frac{\varepsilon_1}{(H/2)}
\]

\[
R = \frac{1}{2} \frac{E'}{1-\nu} \frac{H}{\sigma_0} = \frac{H}{2} \frac{E'}{\sigma_0} \left(\frac{H/2}{(H/2)} \right) = \frac{1}{\Gamma} \rightarrow \Gamma = \frac{1}{R}
\]

Detect accelerations via AC
deflect

problem!
Folded Beam Suspension

- Module 9, slide 24:
 1. Deposit @ high T. Stress free
 2. Cool to RT → stress!

Analyzing an Interconnected Ensemble of Beams (Springs) + Masses

- Typical Questions: all demand knowledge of $x = f(t)$
 1. How does the structure move in response to a force at a specific location?
 2. What is the frequency response to an AC force that applied at a specific location?
 3. Noise?
 4. Response to environmental stimuli? (e.g., rotation)
 5. How does stress affect the behavior of the structure?
Procedure:

1. Build the clt. (Extract the clt.)
 - in the x-direction (for this example)

2. Analyze to get $x_1, f(x)$, force - displacement

 $F = kx \Rightarrow x = \frac{F}{k}$

 - Series because one must go compliance thru both k_1 and k_2, to get from anchor to forcing pt.

 (a) Case 1: series connection of springs forcing pt.

 $x_1 = \frac{1}{k_1} \cdot x$
 $x_2 = \frac{1}{k_2} \cdot x$ \textit{want this: need k_{tot}}

 Original spring length as response to force

 $\Rightarrow K_{tot} = \frac{1}{k_{tot}} F$

 - Parallel if can go from anchor to x_1 forcing pt. via only one of the springs

 $x_2 = \frac{1}{k_2} \cdot x$

 $F_2 = k_2 \cdot x_{tot}$

 Another way to tell that springs are in parallel:

 $F = F_1 + F_2 = (k_1 + k_2) x_{tot}$

 $F_{tot} = k_{tot} x_{tot}$

 $k_{tot} = k_1 + k_2$ \textit{(for k_1 + k_2 in parallel)}
Series Combination of Springs

\[y_{\text{tot}} = y_1 + y_2 \rightarrow \text{series or must go thru both springs} \rightarrow \text{series to get from anchor to forcing pt.} \]

\[k_{\text{tot}} = k_1 + k_2 \]