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Voltage-Controllable Center Frequency

Gap
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Microresonator Thermal Stability

• Thermal stability of poly-Si micromechanical resonator is 
10X worse than the worst case of AT-cut quartz crystal

-1.7ppm/oC

Poly-Si mresonator -
17ppm/oC
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• Use a temperature dependent mechanical stiffness to null 
frequency shifts due to Young’s modulus thermal dep.

[W.-T. Hsu, et al., IEDM’00]

• Problems:
stress relaxation
compromised design 

flexibility

[Hsu et al, IEDM’00]

[Hsu et al IEDM 2000]

Geometric-Stress Compensation
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Voltage-Controllable Center Frequency

Gap
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Excellent Temperature Stability

Uncompensated 
mresonator

-1.7ppm/oC

100
[Ref: Hafner]

Elect.-Stiffness
Compensation
-0.24ppm/oC

AT-cut 
Quartz 

Crystal at 
Various 

Cut 
Angles

Top Electrode-to-
Resonator Gap 

Elect. Stiffness: 
ke ~ 1/d3 

Frequency:
fo ~ (km - ke)

0.5 

Counteracts 
reduction in 

frequency due to 
Young’s modulus 
temp. dependence

Top Metal 
Electrode

Resonator

On par with 
quartz!

[Hsu et al MEMS’02]
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• Slits help to release the stress generated by lateral 
thermal expansion � linear TCf curves � –0.24ppm/oC!!!

Temperature [K]

16V
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14V
12V
10V

VP-VC

Design/Performance:
fo =10MHz, Q=4,000

VP=8V, he=4mm
do=1000Å, h=2mm
Wr=8mm, Lr=40mm

-0.24ppm/oC

[Hsu et al MEMS’02]

Measured Df/f vs. T for ke-
Compensated mResonators
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Can One Cancel ke w/ Two Electrodes?

•What if we don’t like the 
dependence of frequency on VP?

• Can we cancel ke via a differential 
input electrode configuration?

• If we do a similar analysis for Fd2

at Electrode 2:
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Subtracts from the 
Fd1 term, as expected

Adds to the quadrature term  ke’s add, 
no matter the electrode configuration!
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Problems With Parallel-Plate C Drive

•Nonlinear voltage-to-force 
transfer function
Resonance frequency becomes 

dependent on parameters (e.g., 
bias voltage VP)

Output current will also take on 
nonlinear characteristics as 
amplitude grows (i.e., as x 
approaches do)

Noise can alias due to 
nonlinearity

• Range of motion is small
For larger motion, need larger 

gap … but larger gap weakens 
the electrostatic force

Large motion is often needed 
(e.g., by gyroscopes, 
vibromotors, optical MEMS)
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Electrostatic Comb Drive
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Electrostatic Comb Drive

• Use of comb-capacitive tranducers brings many benefits
Linearizes voltage-generated input forces
 (Ideally) eliminates dependence of frequency on dc-bias
Allows a large range of motion

Comb-Driven Folded Beam Actuator

x

y

z

Stator Rotor
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Comb-Drive Force Equation (1st Pass)

Top View

Side View
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Lateral Comb-Drive Electrical Stiffness

• Again:

•No (C/x) x-dependence  no electrical stiffness: ke = 0!

• Frequency immune to changes in VP or gap spacing!
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Typical Drive & Sense Configuration

x

y

z
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Comb-Drive Force Equation (2nd Pass)

• In our 1st pass, we accounted for
Parallel-plate capacitance between stator and rotor

• … but neglected:
Fringing fields
Capacitance to the substrate

• All of these capacitors must be included when evaluating the 
energy expression!

Stator Rotor

Ground 
Plane
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• Finger displacement changes not only the capacitance 
between stator and rotor, but also between these structures 
and the ground plane  modifies the capacitive energy

Comb-Drive Force With 
Ground Plane Correction

[Gary Fedder, Ph.D., 
UC Berkeley, 1994]
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Capacitance Expressions

• Case: Vr = VP = 0V

• Csp depends on whether or not 
fingers are engaged

[Gary Fedder, Ph.D., UC Berkeley, 1994]

Region 2 Region 3

Capacitance per 
unit length
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• Finger displacement changes not only the capacitance 
between stator and rotor, but also between these structures 
and the ground plane  modifies the capacitive energy

Comb-Drive Force With 
Ground Plane Correction

[Gary Fedder, Ph.D., UC Berkeley, 1994]
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Simulate to Get Capacitors  Force

• Below: 2D finite element simulation

20-40% reduction of Fe,x
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Vertical Force (Levitation)

• For Vr = 0V (as shown):
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Simulated Levitation Force

• Below: simulated vertical force Fz vs. z at 
different VP’s [f/ Bill Tang Ph.D., UCB, 1990] 
See that Fz is roughly proportional to –z for z 

less than zo
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 it’s like an electrical stiffness 
that adds to the mechanical 
stiffness

Electrical 
Stiffness
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Vertical Resonance Frequency

• Signs of electrical 
stiffnesses in MEMS:
Comb (x-axis)  ke = 0
Comb (z-axis)  ke > 0
Parallel Plate  ke < 0
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Suppressing Levitation

• Pattern ground plane polysilicon into differentially excited 
electrodes to minimize field lines terminating on top of comb

• Penalty: x-axis force is reduced
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Force of Comb-Drive vs. Parallel-Plate

• Comb drive (x-direction)
V1 = V2 = VS = 1V

• Differential Parallel-Plate        
(y-direction)
V1 = 0V, V2 = 1V

Parallel-plate 
generates a 
much larger 
force; but at 
the cost of 
linearity
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Gap = do = 1 mm
Thickness = h = 2 mm
Finger Length = Lf = 100 
mm
Finger Overlap = Ld = 75 mm
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