Voltage-Controllable Center Frequency **UC Berkeley** Micromechanical Anchor Resonator Electrode Silicon Nitride Isolation Oxide Silicon Substrate 32.3 Quadrature force -32.2 voltage-controllable [ZHW] 32.2 32.1 32.1 electrical stiffness: Electrode 32.1 Overlap quency 32. Area 32. $A_{o} = 88 \mu m^{2}$ 31.9 d=1000Å 31.9 31.8 DC-Bias [V_P] 0 15 20 LecM 12 1/18/08

CTN 4/11/19

1

UC Berkeley

temp. dependence

100

[Ref: Hafner].

-40

20 0 20 40 Temperature [°C]

Copyright © 2019 Regents of the University of California

Copyright © 2019 Regents of the University of California

CTN 4/11/19

1

Force of Comb-Drive vs. Parallel-Plate	
$x \rightarrow y$ $V_r = 0 V$	• Comb drive (x-direction) $\forall V_1 = V_2 = V_s = 1V$ $F_{e,x} = \frac{1}{2} \frac{\varepsilon_o h}{d_o} V_s^2$
$ \begin{array}{c c} L_{f} \\ V_{1} \\ \hline V_{1} \\ \hline V_{2} \end{array} $	• Differential Parallel-Plate (y-direction) & V1 = OV, V2 = 1V
Gap = d_o = 1 µm Thickness = h = 2 µm Finger Length = L_f = 100 µm Finger Overlap = L_d = 75 µm	$F_{e,y} = \frac{1}{2} \frac{\varepsilon_o h L_d}{d_o^2} V_2^2$ Parallel-plate $\frac{F_{e,y}}{T} = \frac{\frac{1}{2} \frac{\varepsilon_o h L_d}{d_o^2} V_2^2}{\frac{1}{2} \frac{\varepsilon_o h L_d}{d_o^2} V_2^2}$ For each of the cost of
EE C245: Introduction to MEMS Design	$F_{e,x} = \frac{1}{2} \frac{\varepsilon_o n}{d_o} V_s^2 \qquad \qquad d_o \qquad \text{line activity}$ LecM 12 C. Nguyen 11/18/08 48

Copyright © 2019 Regents of the University of California