

Actual Op Amps Are Not Ideal
Actual op amps, of course, are not ideal; rather, they
\circledast Have finite gain, A, \circledast Have finite bandwidth, ω_{b}
 Have finite input resistance, R_i Have finite input capacitance, C_i
\circledast Have finite output resistance, R_ \circledast Have an offset voltage V_{os} between their (+) and (-)
terminals Have input bias currents
Have an offset I _{OS} between the bias currents into the (+) and (-) terminals
 ♦ Have finite slew rate ♦ Have finite output swing (governed by the supply voltage used, -L to +L)
And what's worse: All of the above can be temperature (or otherwise environmentally) dependent!

Copyright © 2019 Regents of the University of California

UC Berkeley

v o

circuit becomes:

₹R.

Op Amp Non-Idealities $\rightarrow R_i \& R_o$

Input resistance R_i and Output Resistance R_0 :

Op Amp Non-Idealities

 \Rightarrow Basically reduces down to

model a single pole response, where

 $w_b = \frac{1}{R_0 C_0}$

a voltage-amplifier model \Rightarrow Add an output CO to

CTN 4/23/19

Integrator-Based Diff. Position Sensing **UC Berkele** $+V_P$ \sim R, $R_2 >> \overline{sC_2}$ (for biasing) l ± Cı $\bullet V_0$ ۲4 ROR G Can drive next stage's $-V_{P} \quad \dot{l}_{0} = \dot{l}_{1} + \dot{l}_{2} = N_{P}(sC_{1}) - N_{P}(sC_{2})$ R, who interference to transfer function! = Vp S(Cr Cz) $\dot{V}_{D} = -\dot{A}_{D} \left(\frac{1}{SC_{E}}\right) = -\delta f_{p} \left(\frac{C_{1} \cdot C_{2}}{C_{F}}\right)$ $\frac{C_1 - C_2}{C_F} \Rightarrow A$ seemingly perfect differential sensor/amplifier output ?... but only when the op amp is 'ideal ...

Copyright © 2019 Regents of the University of California

CTN 4/23/19

Problems V	Vith M	EMS-F	irst	
 Many masking steps needed grow if you're not careful 	d, plus CN	NP required	$d ightarrow \operatorname{cost} c$	an
 Processes using trenches semicrostructures 	acrifice li	thographic	resolution	in
 MEMS must withstand tran Precludes the use of stress temperature reg'mts: main temperature reg'mts: maintender Exotic MEMS (e.g., ZnO) during their processing are thus, not truly modular 	nsistor pro ructural m etals, pol- that can o not perm	ocessing te naterials w ymers, etc contaminat nissible	mperature ith low :. e transista	es ors
 Foundry acceptance not gue 	aranteed	and might	be rare	
EEC247B/MEC218: Introduction to MEMS Design	LecM 16	C. Nauven	4/21/15	30

Foundry Acceptance of MEMS-First?
• Is a CMP'ed silicon surface sufficiently pure for fabrication of aggressively scaled transistors? How about if an oxide is grown over the CMP'ed surface and removed via a wet etch to yield a "pristine" surface?
 Is epi silicon grown as part of a sealing process sufficiently pure for fabrication of aggressively scaled transistors? CMOS is many times more difficult to run than MEMS Feature sizes on the nm scale for billions of devices Contamination a big issue: many foundries may not accept pre-processed wafers for contamination reasons Many foundries will not accept any pre-processed wafers, MEMS or not → just can't guarantee working transistor circuits with unknowns in starting silicon
EEC247B/MEC218: Introduction to MEMS Design LecM 16 C. Nguyen 4/21/15 31

Copyright © 2019 Regents of the University of California

CTN 4/23/19

