Lecture 25: Noise

• Announcements:
 • Project Slide Set #3 due Friday, April 26
 • HW#7 online and due Friday, 5/10, at 9 a.m.
 • Module 16 on Sensing Circuit Non-Idealities & Integration online
 • Module 17 is online (on Noise and MDS)
 • First 15 minutes of class were for HKN to go over course evaluation procedures

• Reading: Senturia Chpt. 14, 15
• Lecture Topics:
 • Ideal Op Amps
 • Op Amp Non-Idealities
 • MEMS-Transistor Integration
 — Mixed
 — MEMS-First
 — MEMS-Last
• Reading: Senturia Chpt. 16
• Lecture Topics:
 • Minimum Detectable Signal
 • Noise
 — Circuit Noise Calculations
 — Noise Sources
 — Equivalent Input-Referred Noise
 • Gyro MDS
 — Equivalent Noise Circuit
 — Example ARW Determination

• Last Time:
 • Going through MEMS/transistor integration …
Handling Noise Deterministically

\[\frac{\Delta N}{\Delta f} = S(f) \rightarrow N_{\text{in}} = \sqrt{S(f)B} \]

Con consider this by a sinusoidal analysis step (e.g., when \(B \) is small, say 1 Hz)

Why is this the case?

What noise

\[N(f) \]

Neither the amplitude nor the phase of a signal can change appreciably within a time period \(1/B \).