

CTN 2/12/19

Copyright @ 2019 Regents of the University of California

Succo	essive Di	ffusion	s		
 For actual processes, the one of many high tempe contributes to the final 	he junction/d rature steps junction pro	diffusion fo s, each of ofile	ormation is which	only	
 Typical overall process: 1. Selective doping Implant → effect Drive-in/activatio 2. Other high tempera (eg., oxidation, refeach has their ow 3. Then, to find the fill 	ive $(Dt)_1 = (n \rightarrow D_2t_2)$ ture steps eflow, depos in Dt produc inal profile,	$\Delta R_p)^2/2$ (6 ition) $\rightarrow D_g$ t use	Gaussian) ₃ t ₃ , D ₄ t ₄ ,		
(<i>D</i>	$(t)_{tot} = \sum_{i} d_{i}$	$D_i t_i$			
in the Gaussian distribution expression.					
EE C245: Introduction to MEMS Design	LecM 4	C. Nguyen	8/20/09	72	

Two-	Step Diffusion
 Two step diffusion process Step 1: predeposition Step 2: drive-in diffusion For processes where they drive-in diffusion, the first complementary error function which has the much great 	dure: (i.e., constant source diffusion) sion (i.e., limited source diffusion) re is both a predeposition and a nal profile type (i.e., ction or Gaussian) is determined by ter Dt product:
(Dt) _{predep} » (Dt) _{drive-in} c	impurity profile is complementary error function
(Dt) _{drive-in} » (Dt) _{predep} a	⇒ impurity profile is Gaussian (which is usually the case)

The Diffusion Coefficient				
$D = D_o \exp\left(-\frac{E_A}{kT}\right)$	(as usual, an	Arrhenius relationship		
Table 4.1 Typical Diffusion	n Coefficient Value $D_0(cm^2/sec)$	s for a Number of Impurities $F_{i}(eV)$		
	10.5			
D Al	10.5	3.69		
AI	8.00	3.47		
Ga	3.60	3.51		
In	16.5	3.90		
Р	10.5	3.69		
As	0.32	3.56		
Sb	5.60	3.95		
<u> </u>				

Copyright @ 2019 Regents of the University of California

2

CTN 2/12/19

Copyright @ 2019 Regents of the University of California

