CTN 2/14/19

Structural/S	Sacrificial Materi	al Combinations
Structural Material	Sacrificial Material	Etchant
Poly-Si	SiO ₂ , PSG, LTO	HF, BHF
Al	Photoresist	O ₂ plasma
SiO2	Poly-Si	XeF2
Al	Si	TMAH, XeF2
Poly-SiGe	Poly-Ge	H ₂ O ₂ , hot H ₂ O
 Must consider othe generally have a fine generally have a fine extended by Polysilicon E.R. Polysilicon E.R. Silicon nitride E Wet thermal Side Annealed PSG ~ Aluminum (Si rice 	r layers, too, as rele nite E.R. on any mate IF (48.8 wt. %) ~ 0 .R. ~ 1-14 nm/min O ₂ ~ 1.8-2.3 μm/min 3.6 μm/min h) ~ 4 nm/min (much	ase etchants rial faster in other Al)
E C245: Introduction to MEMS Design	LecM 5 C. N	Nguyen 8/20/09 1

Copyright @ 2017 Regents of the University of California

IIC Berkeley

UC Berkeley

									MAT	ERIAL							
ETCHANT EQUIPMENT CONDITIONS	TARGET	SC Si	Poly	Poly	Wet Ox	Dry Ox	LTO	PSO urari	PSG anniki	Stoic Narid	Lew-o Nizid	AV 2% Si	Sput Tung	Sput	Spet T/W	OCG 820FR	Olin HetPR
Concentrated HF (49/R) Wet Slok Room Temperature	Silicon oxides		0		23k 18k 23k	P	>14k	۲	36k	140	52 30 52	42 0 42	<30	p		PO	P 0
10:1 HF Wet Sisk Roon Temperature	Silicon oxides	-	7	0	230	230	340	ISt	4700	11	3	2500 2500 12k	0	lik	<70	0	0
25:1 HF Wet Sink Room Temperature	Silicon oxides		0	0	97	95	150	w	1500	6	1	w	0			0	0
5:1 BHF Wet Sink Room Temperature	Silicon exides		9	2	1000 900 1080	1000	1200	6800	4400 3500 4400	,	4 3 4	1400	<20 0.25 20	F	1000	0	0
Photphenic Acid (85%) Heated Bath with Reflux 166°C	Silicon nitrides		7		0.7	0.8	d	37	24 9 24	28 28 42	19 19 42	9600				550	390
Silicon Exhant (126 HNO ₃ : 60 H ₂ O : 5 NH ₄ F) Wet Sink Rose Temperature	Silicon	1500	3100 1200 6000	1000	87	w	110	4000	1700	2	. 3	4000	130	3000		0	0
KOH (1 KOH : 2 H ₂ O by weight) Hexad Stimed Bath 80%	<100> Silicen	14k	>10k	,	77 41 77		94	w	380	0	0	F	0			F	P
Aluminum Eichant Type A (16 HJPO ₄ : 1 HNO ₃ : 1 HAc : 2 H ₂ O) Hexard Bath 50°C	Alamatium		<10	4	0	0	0		<10	0	2	6600 2600 6600		0		0	0
Titanium Elichant (20 H ₂ O : 1 H ₂ O ₂ : 1 HP) Wet Sink Rosen Temperature	Tituaium		12		120	w	w	w	2100	8	4	w	0 0 <10	8800		0	0
H ₂ O ₂ (30%) Wet Sink Rose Temperature	Tangaten		0	0	0	0	0	0	0	0	0	<20	190 190 1000	0	60 60 150	4	0
Pranha (-50 H ₂ SO ₄ : 1 H ₂ O ₅) Heated Bath 120°C	Cleaning off metals and organics		0	0	0	0	0		0	0	0	1800		2400		F	F
Acetone Wet Sink Room Temperature	Paotoresist		0	0	0	0	0		0	0	0	0		0		>49k	>394

Wet Etch Rates (f/ K. Williams)

Waterial Wet etchant		Etch rate [nm/min]	Dry etchant	Etch rate [nm/min]		
Polysilicon	HNO ₃ :H ₂ O: NH ₄ F	120-600	SF ₆ + He	170-920		
Silicon nitride	H ₃ PO ₄	5	SF ₆	150-250		
Silicon dioxide	HF	20-2000	CHF ₃ + O ₂	50-150		
Aluminum	H ₃ PO ₄ :HNO ₃ : CH ₃ COOH	660	Cl ₂ + SiCl ₄	100-150		
Photoresist	Acetone	>4000	0 ₂	35-3500		
Gold	КІ	40	n/a	n/a		

Microstructure Stiction IIC Berkeley Stiction: the unintended Rinse Liquid Anchor sticking of MEMS surfaces Stiff Beam Wide Beam Release stiction: Soccurs during drying after a wet release etch Substrate Scapillary forces of droplets pull surfaces into contact by Very strong sticking forces, e.g., like two microscope slides w/ a droplet between In-use stiction: when device surfaces adhere during use due to: ♦ Capillary condensation Beam Selectrostatic forces Stiction Scholar Hydrogen bonding ♦ Van der Waals forces Substrate

CTN 2/14/19

