Lecture 8: Surface Micromachining II

Announcements:
- HW#2 due Thursday, 2/21 at 9 a.m.

Today:
- Reading: Senturia Chpt. 3, Jaeger Chpt. 11, Handouts: “Surface Micromachining for Microelectromechanical Systems”, “Etch Rates for Micromachining—Part II”
- Lecture Topics:
 - Polysilicon surface micromachining
 - Stiction
 - Residual stress
 - Topography issues
 - Nickel metal surface micromachining
 - 3D “pop-up” MEMS
 - Foundry MEMS: the “MUMPS” process
 - The Sandia SUMMIT process

Last Time:
- Going through the details of a surface-micromachining process
- Now, continue with this

Straight or Sloped Sidewalls:
- Often want sloped sidewalls in order to reduce the sharpness of corners
 - Easier to deposit over
 - Sharp corners concentrate stresses
 - High stress can weaken structures creating a reliability concern
 - High stress can dissipate energy, lowering Q
- When you want straight sidewalls (e.g., for lateral electrostatic drive), use a hard mask
 - PR can’t last for thick structures
 - A hard mask suppresses angle transfer
Surface Micromachining II

- **Reality:** PR will be stopped
 - Anisotropic Etch (stylolith)
 - sidewall

- **Remarks:**
 1. If want sloped sidewalls → over-expose PR
 2. If want straight sidewalls:
 - Hard mask allows thinner PR → better lithographic resolution
 - Allow thinner SiO₂

- **Substrate:**
 - Substrate: straight polysi sidewall
 - Substrate: S_{SiO₂} = high

Microstructure Sizing

- **Surface Tension**
 - molecule @ liquid surface
 - = experience a net inward force

- **Liquid Surface**
 - Molecule under the liquid surface
 - pulled in all directions equally
 - not force = zero

- **Equilibrium (nothing moves) → forces balanced**
 - by the liquid's resistance to compression!

- **Result:** Liquid squeezed to achieve the smallest surface area → smallest energy state.
Surface Curvature + Pressure

\[\text{No Pressure Difference} \]
\[\text{Surface remains flat} \]

\[\Rightarrow \text{Upon introduction of a differential pressure, surface curves to generate a net normal force to maintain equilibrium against the pressure} \]

Young-Laplace Equation \(\Rightarrow \) governs the shape of the liquid

\[\Delta p = \gamma \left(\frac{1}{R_x} + \frac{1}{R_y} \right) \]

where \(\Delta p \) = pressure difference

\(\gamma \) = surface tension (force/length)

\(R_x, R_y \) = radii of curvature

Contact Angle

\(\Rightarrow \) governed by a balance of surface tensions

\(\Rightarrow \) dependent on the interface between different materials

Example: Hypothetical Droplet on Hydrophilic Surface

- \(f_{ls} \) \(\leftarrow \) liquid-air surface tension force
- \(f_{sa} \) \(\leftarrow \) solid-air surface tension force
- \(f_{ls} \) \(\leftarrow \) liquid-solid interface force
- \(f_a \) \(\leftarrow \) adhesion force

Copyright © 2019 Regents of the University of California
Equilibrium: 1. horizontal forces cancel?
 2. vertical forces cancel

\[f_A = f_{ls} \sin \theta_c \]
\[f_{sa} = f_{la} + f_{ls} \cos \theta_c \]

\[\sigma_{sa} = \sigma_{ls} + \sigma_{la} \cos \theta_c \]

relationship between surface tensions captured by contact angle

If hydrophilic surface - water lowers it↓

\[\text{droplet} \]

\[\text{hydrophilic surface} \]

\[\text{droplet collapses to hug surface} \]

Example. Two Plates (cross-section)

Laplace Equation

\[\Delta P_{la} = \frac{\gamma}{r} \]

\[r = \frac{g/2}{\cos \theta_c} \]

\[F = \Delta P_{la} A = \frac{2 \sigma_{la} \cos \theta_c}{g} \]

\[(+) \text{force needed to keep plates apart.} \]

\[(+) \text{force means (+) Laplace pressure} \]
Liquid	Solid	Contact angle
water | soda-lime glass | 0°
ethanol | lead glass | 0°
diethyl ether | fused quartz | 0°
carbon tetrachloride | | 0°
glycerol | | 0°
acetic acid | | 0°
water | paraffin wax | 107°
silver | | 90°
methyl iodide | soda-lime glass | 29°
lead glass | 30°
fused quartz | 33°
mercury | soda-lime glass | 140°

Some liquid-solid contact angles\(^5\)

Remarks:
1. To prevent stiction
 - reduce \(A\) (wetted area)
 - reduce \(\gamma_{1a}\) → choose the right liquid & solids
 - make \(g\) large
 - increase \(k\) → make thing thicker & stiffer
 - \(\theta_c > 90^\circ\)