Lecture Outline

- Reading: Senturia, Chpt. 14, Chpt. 16, Chpt. 21
- Lecture Topics:
 - Gyroscopes
 - Gyro Circuit Modeling
 - Minimum Detectable Signal (MDS)
 - Noise
 - Angle Random Walk (ARW)
Gyroscopes

Classic Spinning Gyroscope

- A gyroscope measures rotation rate, which then gives orientation → very important, of course, for navigation
- Principle of operation based on conservation of momentum
- Example: classic spinning gyroscope

Rotor will preserve its angular momentum (i.e., will maintain its axis of spin) despite rotation of its gimbed chassis
Vibratory Gyroscopes

- Generate momentum by vibrating structures
- Again, conservation of momentum leads to mechanisms for measuring rotation rate and orientation
- Example: vibrating mass in a rotating frame

\[
\begin{align*}
\text{Mass at rest} & \quad \text{Driven into vibration along the } y\text{-axis} \\
\text{y-displaced mass} & \quad \text{Get an } x' \text{ component of motion} \\
\text{Capacitance between mass and frame} & = \text{constant}
\end{align*}
\]

Principle of Operation

- Tuning Fork Gyroscope:
 - Input Rotation
 - Driven Vibration @ \(f_c \)
 - Coriolis (Sense) Response
 - Coriolis Torque
 - Detect motion out-of-the plane of the tuning fork as rotation!
Basic Vibratory Gyroscope Operation

Principle of Operation
- Tuning Fork Gyroscope:

Drive/Sense Response Spectra:

\[
\omega \quad \text{Amplitude} \quad f_0 (@ T_1)
\]

- Coriolis Acceleration
- Driven Velocity
- Rotation Rate
- Beam Mass
- Sense Frequency

\[
\tilde{a}_c = 2\tilde{v} \times \Omega
\]

Vibratory Gyroscope Performance

Principle of Operation
- Tuning Fork Gyroscope:

\[
\tilde{x} = \frac{\tilde{F}_c}{k} = \frac{m\tilde{a}_c}{k} = \frac{\tilde{a}_c}{\omega_c^2}
\]

- Beam Mass
- Beam Stiffness
- Sense Frequency
- Driven Velocity

\[
\tilde{a}_c = 2\tilde{v} \times \Omega
\]

*To maximize the output signal \(x \), need:
- Large sense-axis mass
- Small sense-axis stiffness
- (Above together mean low resonance frequency)
- Large drive amplitude for large driven velocity (so use comb-drive)
- If can match drive freq. to sense freq., then can amplify output by \(Q \) times
MEMS-Based Gyroscopes

MEMS-Based Tuning Fork Gyroscope

- In-plane drive and sense modes pick up z-axis rotations
- Mode-matching for maximum output sensitivity
- From [Zaman, Ayazi, et al, MEMS'06]
MEMS-Based Tuning Fork Gyroscope

• Drive and sense axes must be stable or at least track one another to avoid output drift

Need: small or matched drive and sense axis temperature coefficients to suppress drift

Problem: if drive frequency changes relative to sense frequency, output changes \Rightarrow bias drift

[Zaman, Ayazi, et al, MEMS'06]
Mode Matching for Higher Resolution

- For higher resolution, can try to match drive and sense axis resonance frequencies and benefit from Q amplification.

Problem: mismatch between drive and sense frequencies → even larger drift!

Need: small or matched drive and sense axis temperature coefficients to make this work.

Issue: Zero Rate Bias Error

- Imbalances in the system can lead to zero rate bias error.

Drive imbalance ⇒ off-axis motion of the proof mass

Mass imbalance ⇒ off-axis motion of the proof mass

Quadrature output signal that can be confused with the Coriolis acceleration

Output signal in phase with the Coriolis acceleration
Nuclear Magnetic Resonance Gyroscope

* The ultimate in miniaturized spinning gyroscopes?
 From CSAC, we may now have the technology to do this

- Better if this is a noble gas nucleus (rather than e-), since nuclei are heavier ⇔ less susceptible to B field
 Soln: Spin polarize Xe129 nuclei by first polarizing e- of Rb87 (a la CSAC), then allowing spin exchange

- Challenge: suppressing the effects of B field

![Diagram of nuclear magnetic resonance gyroscope](image)

MEMS-Based Tuning Fork Gyroscope

- (-) Sense Output Current
 (+) Sense Output Current

![Diagram of MEMS-based tuning fork gyroscope](image)

[Zaman, Ayazi, et al, MEMS'06]
Determining Sensor Resolution

MEMS-Based Tuning Fork Gyroscope

[Zaman, Ayazi, et al, MEMS'06]
Drive Axis Equivalent Circuit

- Generates drive displacement velocity x_d to which the Coriolis force is proportional
- To Sense Amplifier (for synchronization)

Drive-to-Sense Transfer Function

Rotation-Induced Coriolis Force:

$$\mathbf{a}_s = 2\omega \times \mathbf{x}_d \times \mathbf{\Omega}$$

Acts in the sense mode direction

$$a_s = 2\omega \chi_d \Omega \sin 90^\circ$$
Gyro Readout Equivalent Circuit
(for a single tine)

\[F_c = m\ddot{a}_c = m \cdot (2\ddot{x}_d \times \Omega) \]

- Gyro Sense Element
- Output Circuit

\[\eta_e \cdot 1 \]

\[V_0 \]

Noise Sources

\[\begin{align*}
 I_x & = c_x \int \frac{r_x}{f_r} \, dt \\
 R_f & = \int \frac{r_x}{f_r} \, dt
\end{align*} \]

Easiest to analyze if all noise sources are summed at a common node

Minimum Detectable Signal (MDS)

- Minimum Detectable Signal (MDS): Input signal level when the signal-to-noise ratio (SNR) is equal to unity

\[\text{Sensor} \quad \text{Scale Factor} \quad \text{Circuit} \quad \text{Gain} \quad \text{Output} \]

- The sensor scale factor is governed by the sensor type
- The effect of noise is best determined via analysis of the equivalent circuit for the system
Move Noise Sources to a Common Point

- Move noise sources so that all sum at the input to the amplifier circuit (i.e., at the output of the sense element)
- Then, can compare the output of the sensed signal directly to the noise at this node to get the MDS

Gyro Readout Equivalent Circuit

(for a single tine)

- Easiest to analyze if all noise sources are summed at a common node
Gyro Readout Equivalent Circuit
(for a single tine)

\[F_c = m\ddot{a}_c = m \cdot (2\dddot{x}_d \times \Omega) \]

Noise Sources

\[i_x \]
\[c_x \]
\[f_r \]
\[r_x \]
\[\eta \]
\[i_{eq} \]
\[v_{eq} \]

Gyro Sense Element
Output Circuit

Signal Conditioning Circuit
(Transresistance Amplifier)

\[V_0 \]

\[i_{eq}^2 \]

\[v_{eq}^2 \]

* Here, \(v_{eq}^2 \) and \(i_{eq}^2 \) are equivalent input-referred voltage and current noise sources
Noise

- Noise: Random fluctuation of a given parameter $I(t)$
- In addition, a noise waveform has a zero average value

- We can't handle noise at instantaneous times
- But we can handle some of the averaged effects of random fluctuations by giving noise a power spectral density representation
- Thus, represent noise by its mean-square value:

Let $i(t) = I(t) - I_D$

Then $\overline{i^2} = \left(\overline{I - I_D}\right)^2 = \lim_{T \to \infty} \frac{1}{T} \int_0^T |I - I_D|^2 \, dt$

Noise Spectral Density

- We can plot the spectral density of this mean-square value:

\[\overline{i^2} \text{ [units}^2/\text{Hz}] \]

One-sided spectral density
→ used in circuits
→ measured by spectrum analyzers

Two-sided spectral density
(1/2 the one-sided)
Often used in systems courses

\[\overline{i^2} = \text{integrated mean-square noise spectral density over all frequencies (area under the curve)} \]
Circuit Noise Calculations

Inputs

- Deterministic
 - \(v_i(j \omega) \)
 - \(S_i(\omega) \)

Outputs

- Deterministic
 - \(v_o(j \omega) = H(j \omega) v_i(j \omega) \)

- Random
 - \(S_o(\omega) = |H(j \omega)H^*(j \omega)|S_i(\omega) = |H(j \omega)|^2S_i(\omega) \)

\[
\sqrt{S_o(\omega)} = |H(j \omega)|\sqrt{S_i(\omega)}
\]

* Deterministic: \(v_o(j \omega) = H(j \omega) v_i(j \omega) \)

* Random: \(S_o(\omega) = H(j \omega)H^*(j \omega)S_i(\omega) = |H(j \omega)|^2S_i(\omega) \)

Handling Noise Deterministically

* Can do this for noise in a tiny bandwidth (e.g., 1 Hz)

\[
\frac{v_{n1}^2}{\Delta f} = S_1(f) \quad v_{n1} = \sqrt{S_1(f) \cdot B}
\]

Can approximate this by a sinusoidal voltage generator (especially for small B, say 1 Hz)

\[
S_n(j \omega)
\]

Why? Neither the amplitude nor the phase of a signal can change appreciably within a time period \(1/B \).

[This is actually the principle by which oscillators work → oscillators are just noise going through a tiny bandwidth filter]
Systematic Noise Calculation Procedure

1. For \(\overline{i_{n1}^2} \), replace it with a deterministic source of value \(\overline{i_{n1}^2} \).

2. Calculate \(v_{on1}(\omega) = \overline{i_{n1}(\omega)H(j\omega)} \) (treating it like a deterministic signal).

3. Determine \(\overline{v_{on1}^2} = \overline{i_{n1}^2} \cdot |H(j\omega)|^2 \).

4. Repeat for each noise source: \(\overline{v_{on2}^2}, \overline{v_{on3}^2}, \overline{v_{on4}^2} \).

5. Add noise power (mean square values)

\[
\overline{v_{onTOT}^2} = \overline{v_{on1}^2} + \overline{v_{on2}^2} + \overline{v_{on3}^2} + \overline{v_{on4}^2} + \cdots
\]

\[
\overline{v_{onTOT}} = \sqrt{\overline{v_{on1}^2} + \overline{v_{on2}^2} + \overline{v_{on3}^2} + \overline{v_{on4}^2} + \cdots}
\]

Total rms value
Determining Sensor Resolution

Example: Gyro MDS Calculation

\[\vec{F}_c = m \bar{\vec{a}}_c = m \cdot (2 \vec{x}_d \times \Omega) \]

* The gyro sense presents a large effective source impedance
 \(\Rightarrow \) Currents are the important variable; voltages are "opened" out
 \(\Rightarrow \) Must compare \(i_o \) with the total current noise \(i_{eqTOT} \) going into the amplifier circuit

\[R_f \]

\[V_0 \]
Example: Gyro MDS Calculation (cont)

First, find the rotation to i_o transfer function:

$$\dot{x}_s = \frac{\omega_0 Q}{k_x} \Theta_x(j\omega) \frac{F_s}{F_c} = \frac{\omega_0 Q}{k_x} \cdot 2\omega_0 x_0 \sin\omega R\omega \frac{1}{\omega_e}$$

$$\dot{x}_s = 2 \frac{\omega_0}{\omega_e} Q x_0 \Theta(j\omega) R\omega$$

When $\omega \sim \omega_m$, $i_o \sim i_{eq}$:

$$i_o \sim \frac{A_i}{R}$$

$$\downarrow$$

Input-referred noise current entering the sense amplifier into i_{eq}

$$i_{eq} = A_i \frac{\omega_0}{2} Q x_0 \eta_e \Theta(j\omega)$$

$$\downarrow$$

Easier to determine directional error as a function of elapsed time.
Example: Gyro MDS Calculation (cont)

\[F_c = m \ddot{a}_c = m \cdot (2 \dddot{x}_d \times \dddot{\Omega}) \]

\[I_x e \cdot f_r^2 r_x \eta \cdot 1 \]

\[i_{eq} \]

\[v_{eq}^2 \]

\[R_f \]

\[V_0 \]

Now, find the \(i_{eqTOT} \) entering the amplifier input:

\[i_{eqTOT} = i_s + i_{eq} \]

Brownian motion noise of the sense element is determined entirely by the noise in \(r_x \rightarrow \frac{v_{eq}^2}{R_f} \)

Easiest to convert to an all electrical equivalent circuit.

Example: Gyro MDS Calculation (cont)

\[L_x \quad C_x \quad R_x \]

\[\frac{i_s}{R_x} = \frac{kT}{R_x} \]

\[\Theta(j\omega) \]

\[\frac{\alpha}{\Delta f} = 4K T \cdot \Theta(j\omega) \cdot \Theta(j\omega) \]

Thus:

\[\frac{\alpha^2}{\Delta f} = \frac{4K T}{R_x} \cdot \Theta(j\omega) \cdot \Theta(j\omega) + \frac{1}{R_x} \]

Learn to get these from EE240.

\[\alpha \text{ or just get them from a data sheet...} \]
Example ARW Calculation

- **Example Design:**
 - **Sensor Element:**
 - $m = (100\, \mu m)(100\, \mu m)(20\, \mu m)(2300\, kg/m^3) = 4.6 \times 10^{-10}\, kg$
 - $\omega_s = 2\pi(15\, kHz)$
 - $\omega_d = 2\pi(10\, kHz)$
 - $k_s = \omega_s^2m = 4.09\, N/m$
 - $x_d = 20\, \mu m$
 - $Q_s = 50,000$
 - $V_p = 5V$
 - $h = 20\, \mu m$
 - $d = 1\, \mu m$

- **Sensing Circuitry:**
 - $R_f = 100k\Omega$
 - $i_{ia} = 0.01\, pA/\sqrt{Hz}$
 - $v_{ia} = 12\, nV/\sqrt{Hz}$

LF356 Op Amp Data Sheet

LF155/LF156/LF256/LF257/LF355/LF356/LF357

JFET Input Operational Amplifiers

General Description

These are the first monolithic JFET input operational amplifiers to incorporate well matched, high voltage JFETs on the same chip with standard bipolar transistors (BSFET™ Technology). These amplifiers feature low input bias and offset currents/low offset voltage and offset drift coupled with offset adjust which does not degrade drift or common-mode rejection. The devices are also designed for high slew rate, wide bandwidth, extremely fast settling time, low voltage and current noise and low 1/f noise corner.

Features

- Replace expensive hybrid and module FET op amps
- Rugged JFETs allow blow-out free handling compared with MOSFET input devices
- Excellent for low noise applications using either high or low source impedance—very low 1/f corner
- Offset adjust does not degrade drift or common-mode rejection as in most monolithic amplifiers
- New output stage allows use of large capacitive loads (5,000 pF) without stability problems
- Internal compensation and large differential input voltage capability

Applications

- Precision high speed integrators
- Fast D/A and A/D converters
- High impedance buffers
- Wideband, low noise, low drift amplifiers

Uncommon Features

- Extremely fast settling time to 0.01%
- Fast slew rate
- Wide gain bandwidth
- Low input noise voltage

Example ARW Calculation
Example ARW Calculation (cont)

Get rotation rate to output current scale factor:

\[
\frac{21\mu F}{21k\Omega \cdot \left(\frac{10k\Omega}{50k\Omega}\right) = 2.93 \times 10^{12}}
\]

\[
\Theta(j\omega) = \frac{j(10k\Omega)}{\left(\frac{10k\Omega}{50k\Omega}\right)^2 + \frac{j(10k\Omega)}{50k\Omega}} = \frac{j(10k\Omega)}{1.25 \times 10^{10} - j(10k\Omega)}
\]

\[
|\Theta(j\omega)| = \frac{30k}{\sqrt{1.25 \times 10^{10} + (10k\Omega)^2}} = 0.000024 \quad \text{pRs} \times 10^{-6} \text{F/m}
\]

\[
\frac{21\mu F}{21k\Omega} = \frac{\epsilon_{0}k_{l}w_{p}}{d} = \frac{2000\epsilon_{0}}{1.25 \times 10^{10} - j(10k\Omega)}
\]

Assuming electrode covers the whole sidewall:

Then, get noise:

\[
\frac{\tilde{\alpha}}{\text{av}} \text{en} = \frac{4\pi kT}{R_{x}} \frac{|\Theta(j\omega)|^2}{1 + \frac{4\pi kT}{R_{f}} + \frac{\epsilon_{0}k_{l}}{\Delta f} + \frac{\eta_{m}}{\Delta f}}
\]

Example ARW Calculation (cont)

\[
R_{x} = \frac{21\mu F \cdot (8.60 \times 10^{-9})}{(50k\Omega) \cdot (1.25 \times 10^{10})} = 110.6k\Omega
\]

\[
\frac{\tilde{\alpha}}{\text{en}} \text{eq}_{\text{tot}} = \frac{1.66 \times 10^{-26}}{(110.6k\Omega)} = 1.66 \times 10^{-26} \text{A/H}_{2}
\]

\[
\frac{\tilde{\alpha}}{\text{en}} \text{eq}_{\text{tot}} = \frac{1.66 \times 10^{-26}}{1.25 \times 10^{12}} = 1.66 \times 10^{-42} \text{A/H}_{2}
\]

\[
\Delta f_{\text{eq}} = \frac{1.66 \times 10^{-26}}{1.25 \times 10^{12}} = 1.66 \times 10^{-42} \text{A/H}_{2}
\]

\[
\Delta f_{\text{eq}} = \frac{1.66 \times 10^{-26}}{1.25 \times 10^{12}} = 1.66 \times 10^{-42} \text{A/H}_{2}
\]

And finally:

\[
\text{ARW} = \frac{1}{60} \Delta f_{\text{eq}} = \frac{1}{60} \left(9.44 \times 10^{-12}
ight) = 1.57 \text{pRs} \times 10^{-12} \text{A/H}_{2}
\]
What if $\omega_d = \omega_s$?

If $\omega_d = \omega_s = 15 \text{kHz}$, then $|\mathcal{D}(\omega_d)|^2 = 1$ and

$$A = \frac{k_d}{k_s} Q_d Q_s \eta_d \eta_s |\mathcal{D}(\omega_d)|^2 = \frac{2 Q_d Q_s \eta_d \eta_s}{2(3000 \mu)(20 \mu)(2)(1000 \text{ e})} \approx 10^{-7} \text{ C}$$

$$\frac{\Delta \text{eq}_{\text{HT}}}{\Delta f} = \frac{(1.66 \times 10^{-10}) (1) + (1.66 \times 10^{-10}) (0.61^2) + (12 \mu)^2}{1.5 \times 10^{-26} \text{ A}/\text{Hz}^2} \approx 1.66 \times 10^{-26} \text{ A}/\text{Hz}^2$$

Now, the second element dominates!

$$\frac{\Delta \text{eq}_{\text{HT}}}{\Delta f} = 1.66 \times 10^{-26} \text{ A}/\text{Hz}^2 \quad \Rightarrow \quad \Delta \text{eq}_{\text{HT}} \approx 4 \times 10^{-12} \text{ A}/\text{Hz}^2$$

$$\sigma_{\text{HT}} = \frac{\Delta \text{eq}_{\text{HT}}}{\Delta f} = \frac{4 \times 10^{-12}}{10^{12}} \left(\frac{3600}{3600} \right) \approx 0.476 \text{ (\% Hz)}/\text{Hz}$$

And finally:

$$\text{ARV} = \frac{1}{60} \sigma_{\text{HT}} = \frac{1}{60} (0.476) \approx (0.0079 \% \text{ Hz}) = \text{ Navigation grade}$$