

Lecture Outline				
 Reading: Senturia Chpt. 16 Lecture Topics: Minimum Detectable Signal Noise Circuit Noise Calculations Noise Sources Equivalent Input-Referred Noise Gyro MDS Equivalent Noise Circuit Example ARW Determination 				
EEC247B/MEC218: Introduction to MEMS Design	LecM 17	C. Nguyen	11/18/08	2

Example: Gyro MDS Calculation (cont)
UB Backelow

$$\begin{array}{c}
\downarrow_{xx} C_{x} R_{x} & \downarrow_{y} & \downarrow_{x} & \downarrow_{x}$$

 $\underbrace{\text{Example ARW Calculation (cont)}}_{\text{UC Berkeley}}$ $\underbrace{\text{Get rotation rate to adput current scale factor:}}_{A : 2 \underbrace{Ud}_{US} O_{Std} \eta_{e}^{1} \underbrace{O}_{S}^{1} (j_{Ud}) = 2 \underbrace{\binom{10k}{15k}}{(50k)} (50k) (20\mu) (S) (2000 \varepsilon_{0}) (0.000024) = 2.83 \times 10^{-12} \text{C}}_{S3 \times 10^{-12} \text{C}}_$

What if $\omega_{d} = \omega_{s}$? $\Delta = 2 \frac{\omega_{d}}{\omega_{s}} \mathcal{Q}_{s} \mathcal{K}_{d} \eta_{e} | \mathcal{D}_{s}^{2}(j\omega_{d})| = 2 \mathcal{Q}_{s} \mathcal{K}_{d} \eta_{e} = 2(S_{0} K)(2\mathcal{Q}_{\mu})(s)(2000 \varepsilon_{0}) = 1.77 \times 10^{-7} \text{C}$ $\Delta = 2 \frac{\omega_{d}}{\omega_{s}} \mathcal{Q}_{s} \mathcal{K}_{d} \eta_{e} | \mathcal{D}_{s}^{2}(j\omega_{d})| = 2 \mathcal{Q}_{s} \mathcal{K}_{d} \eta_{e} = 2(S_{0} K)(2\mathcal{Q}_{\mu})(s)(2000 \varepsilon_{0}) = 1.77 \times 10^{-7} \text{C}$ $\Delta = \frac{1}{\omega_{s}} \mathcal{Q}_{s} \mathcal{K}_{d} \eta_{e} | \mathcal{D}_{s}^{2}(j\omega_{d})| = 2 \mathcal{Q}_{s} \mathcal{K}_{d} \eta_{e} = 2(S_{0} K)(2\mathcal{Q}_{\mu})(s)(2000 \varepsilon_{0}) = 1.77 \times 10^{-7} \text{C}$ $\Delta = \frac{1}{\omega_{s}} \mathcal{Q}_{s} \mathcal{K}_{d} \eta_{e} | \mathcal{D}_{s}^{2}(j\omega_{d})| = 2 \mathcal{Q}_{s} \mathcal{K}_{d} \eta_{e} = 2(S_{0} K)(2\mathcal{Q}_{\mu})(s)(2000 \varepsilon_{0}) = 1.77 \times 10^{-7} \text{C}$ $\Delta = \frac{1}{\omega_{s}} \mathcal{Q}_{s} \mathcal{K}_{d} \eta_{e} | \mathcal{D}_{s}^{2}(j\omega_{d})| = 2 \mathcal{Q}_{s} \mathcal{K}_{d} \eta_{e} = 2(S_{0} K)(2\mathcal{Q}_{\mu})(s)(2000 \varepsilon_{0}) = 1.77 \times 10^{-7} \text{C}$ $\Delta = \frac{1}{(100-6K)} (1)^{2} + \frac{(1.66 \times 10^{-29})}{(110-6K)} + \frac{(1.66 \times 10^{-29})}{(100-6K)} + \frac{(0.61 \text{ p})^{2}}{(100)^{2}} + \frac{(12 \text{ h})^{2}}{(100)^{2}} + \frac{(12 \text{ h})$