

EE C247B - ME C218 Introduction to MEMS Design Spring 2019

Prof. Clark T.-C. Nguyen

Dept. of Electrical Engineering & Computer Sciences
University of California at Berkeley
Berkeley, CA 94720

Lecture Module 5: Surface Micromachining

E C245: Introduction to MEMS Design

LecM !

C. Nguyei

8/20/09

UC Berkeley.

Lecture Outline

- Reading: Senturia Chpt. 3, Jaeger Chpt. 11, Handout: "Surface Micromachining for Microelectromechanical Systems"
- Lecture Topics:
 - \$ Polysilicon surface micromachining
 - **♥** Stiction
 - ♥ Residual stress
 - ♦ Topography issues
 - \$ Nickel metal surface micromachining
 - \$3D "pop-up" MEMS
 - \$ Foundry MEMS: the "MUMPS" process
 - **\\$** The Sandia SUMMIT process

EE C245: Introduction to MEMS Design

LecM 5

C. Nguyen

8/20/09

UC Berkeley

Why Polysilicon?

- * Compatible with IC fabrication processes
 - ♦ Process parameters for gate polysilicon well known
 - Sonly slight alterations needed to control stress for MEMS applications
- Stronger than stainless steel: fracture strength of polySi ~
 2-3 GPa, steel ~ 0.2GPa-1GPa
- Young's Modulus ~ 140-190 GPa
- Extremely flexible: maximum strain before fracture ~ 0.5%
- Does not fatigue readily
- Several variations of polysilicon used for MEMS
 - LPCVD polysilicon deposited undoped, then doped via ion implantation, PSG source, POCl₃, or B-source doping
 - Sin situ-doped LPCVD polysilicon
 - Attempts made to use PÉCVD silicon, but quality not very good (yet) → etches too fast in HF, so release is difficult

<u>E C245</u>: Introduction to MEMS Design

LecM 5

C. Nguyer

8/20/09

5

ŲC Be<u>rkeley,</u>

Polysilicon Surface-Micromachining Process Flow

EE C245: Introduction to MEMS Design

LecM 5

C. Nguyen

8/20/09

Structural/Sacrifical Material Combinations

Structural Material	Sacrificial Material	Etchant
Poly-Si	SiO2, PSG, LTO	HF, BHF
Al	Photoresist	O ₂ plasma
SiO ₂	Poly-Si	XeF ₂
Al	Si	TMAH, XeF2
Poly-SiGe	Poly-Ge	H ₂ O ₂ , hot H ₂ O

- Must consider other layers, too, as release etchants generally have a finite E.R. on any material
- * Ex: concentrated HF (48.8 wt. %)
 - ♥ Polysilicon E.R. ~ O
 - Silicon nitride E.R. ~ 1-14 nm/min
 - ♦ Wet thermal SiO₂ ~ 1.8-2.3 μm/min
 - Shannealed PSG ~ 3.6 μm/min
 - \$ Aluminum (Si rich) ~ 4 nm/min (much faster in other Al)

E C245: Introduction to MEMS Design

.ecM 5

C. Nguyei

8/20/09

13

		Wet-Etch	Rates for	Microma	chining	and IC	Processing	(Å/min)									
The top etch rate was measured by the authors with fres	h solutions, etc. The	e center and	bottom	values are t	the low a	nd high o	etch rates o	bserved b			ters in our	lab under	ess caref	illy contr	rolled con	fitions.	_
ETCHANT			-	-	-	-		-	MA	TERIAL	_	-	-	-	+	-	-
EQUIPMENT	TARGET	SC Si	Poly	Poly	Wet	Dry	LTO	PSG	PSG	Stoic	Low-o	AV	Sput	Sput	Sput Ti/W	OCG 820PR	Oti
CONDITIONS	MATERIAL	<100>	e,	undop	Ox	Ox F	undop >14k	unani F	annid 36k	Nitrid 140	Nitrid 52	2% Si 42	Tung <50	Ti F	TIVW	820PR	Hnti
Concearated HF (49%) Wet Sink	Silicon oxides		0		23k 18k	, r	>14K	'	30k	140	30	0	~	,	'	1	'
Room Temperature	Silicon	-	7	0	23k	230	340	15k	4700	11	52	2500	0	lik	<70	0	\vdash
10:1 HF Wet Sink Room Temperature	oxides .		<i>'</i>		230	250	340	13K	4/00		,	2500 12k			100	Ů	
25:1 HF Wet Sink Room Temperature	Silicon oxides	-	0	0	97	95	150	w	1500	6	1	W	0			0	
5:1 BHF Wet Sink Room Temporature	Siticon oxides		9	2	1000 900 1080	1000	1200	6800	4400 3500 4400	9	4 3 4	1400	<20 0.25 20	F	1000	0	
Phospheric Acid (85%) Heard Bath with Reflux 166°C	Silicon nitrides		7		0.7	0.8	<1	37	24 9 24	28 28 42	19 19 42	9800				550	3
Silicon Exchant (126 HNO ₃ : 60 H ₂ O: 5 NH ₄ F) Wet Sink Room Temperature	Silicon	1500	3100 1200 6000	1000	87	w	110	4000	1700	2	. 3	4000	130	3000		0	
KOH (1 KOH : 2 H ₂ O by weight) Heazed Stirred Bath 80°C	<100> Silicen	14k	>10k	F	77 41 77		94	w	380	0	0	F	0			F	
Aluminum Eichant Type A (16 H ₂ PO ₄ : 1 HNO ₃ : 1 HAc: 2 H ₂ O) House Bath 50°C	Alumnium		<10	49	0	0	0		<10	0	2	6600 2600 6600	-	0		0	
Titanium Eschant (20 H ₂ O : 1 H ₂ O ₃ : 1 HF) Wet Sink Room Temperature	Titunium	-	12		120	w	w	w	2100	8	4	w	0 0 <10	8800		0	
H ₃ O ₃ (39%) Wet Sink Room Temperature	Tungsten		0	0	0	0	0	0	0	0	0	<20	190 190 1000	0	60 60 150	a	
Piranha (-50 H ₂ SO ₄ : 1 H ₂ O ₅) Heated Bath 120°C	Cleaning off metals and organics		0	0	0	0	0	-	0	0	0	1800		2400		F	
Actione Wet Sink Room Temperature	Photoresist		0	0	0	0	0		0	0	0	0	-	0		>44k	>3

CBerkeley For some popular films:							
Material	Wet etchant	Etch rate [nm/min]	Dry etchant	Etch rate [nm/min]			
Polysilicon	HNO ₃ :H ₂ O: NH ₄ F	120-600	SF ₆ + He	170-920			
Silicon nitride	H ₃ PO ₄	5	SF ₆	150-250			
Silicon dioxide	HF	20-2000	CHF ₃ + O ₂	50-150			
Aluminum	H ₃ PO ₄ :HNO ₃ : CH ₃ COOH	660	Cl ₂ + SiCl ₄	100-150			
Photoresist	Acetone	>4000	O ₂	35-3500			
Gold	KI	40	n/a	n/a			

Vertical Stress Gradients • Variation of residual stress in the direction of film growth • Can warp released structures in z-direction

E C245: Introduction to MEMS Design

LecM 5

20KY

. Nguyen

017

8/20/09

ev

Stress in Polysilicon Films

- Stress depends on crystal structure, which in turn depends upon the deposition temperature
- Temperature ≤ 600°C
 - \$Films are initially amorphous, then crystallize
 - \$Get equiaxed crystals, largely isotropic
 - ♦ Crystals have higher density → tensile stress
 - ♦ Small stress gradient
- Temperature ≥ 600°C
 - ♥ Columnar crystals grow during deposition
 - ♦ As crystals grow vertically and in-plane they push on neighbors → compressive stress
 - ♦ Positive stress gradient

E C245: Introduction to MEMS Design

LecM 5

C. Nguyen

20/09

32

polyMUMPS Minimum Feature Constraints UC Berkeley

- Minimum feature size
 - States Determined by MUMPS' photolithographic resolution and alignment precision
 - Violations result in missing (unanchored), under/oversized, or fused features
 - Use minimum feature only when absolutely necessary

	Nominal [µm]	Min Feature [µm]	Min Spacing [µm]
POLYO, POLY1, POLY2	3	2	2
POLY1_POLY2_VIA	3	2	2
ANCHOR1, ANCHOR2	3	3	2
DIMPLE	3	2	3
METAL	3	3	3
HOLE1, HOLE2	4	3	3
HOLEM	5	4	4

Rule	Rule Letter	Figure #	Min. Value (μm)	
POLY0 space to ANCHOR1	A	2.5	4.0	
POLY0 enclose ANCHOR1	В	2.5	4.0	
POLY0 enclose POLY1	С	2.6	4.0	
POLY0 enclose POLY2	D	2.7	5.0	
POLY0 enclose ANCHOR2	E	2.8	5.0	
POLY0 space to ANCHOR2	F	2.8	5.0	
Rule	Rule Lette	r Figure	# Min. Value (µr	
POLY1 enclose ANCHOR1	G	2.6	4.0	
POLY1 enclose DIMPLE	N	2.13	4.0	
POLY1 enclose POLY1 POLY2 VIA	Н	2.9, 2.1	1 4.0	
POLY1 enclose POLY2	0	2.14	4.0	
POLY1 space to ANCHOR2	K	2.11	3.0	
*Lateral etch holes space in POLY1	R	2.15	≤30 (max. valu	
Rule	Rule Lette	r Figure	# Min. Value (μn	
POLY2 enclose ANCHOR2	J J	2.7.2.10	"	
POLY2 enclose POLY1_POLY2_VIA	Ĺ	2.9	4.0	
POLY2 cut-in POLY1	P	2.14	5.0	
POLY2 cut-out POLY1	Q	2.14	4.0	
POLY2 enclose METAL	M	2.12	3.0	
POLY2 space to POLY1	I	2.10	3.0	
HOLE2 enclose HOLE1	Т	2.16	2.0	
HOLEM enclose HOLE2	U	2.16	2.0	
*Lateral etch holes space in POLY2	S	2.15	≤30 (max. valu	
245: Introduction to MEMS Design	LecM 5	C. Nguye	n 8/20/09	

-		Spacing				
	2	2				
NCHOR1			4/B/2.5	4/A/2.5		
OLY1			4/C/2.6			
NCHOR2			5/E/2.8	5/F/2.8		
OLY2			5/D/2.7			
-	2	2/2.52				
OLY0						
NCHOR1			4/G/2.6			
NCHOR2				3/K/2.11		
OLY2			4/0/2.14			
IMPLE			4/N/2.13			
OLY1_POLY2_VIA			4/H/2.9			
	2	2/2.52				
OLY0						
OLY1				3/1/2.10	5/P/2.14	4/Q/2.14
ΊΑ			4/L/2.9			
NCHOR2			5/J/2.7			
1ETAL			3/M/2.12			
IOLE2			2/U/2.16			
IOLE1			2/T/2.16			
	OLY2 OLY0 NCHOR1 NCHOR2 OLY2 IMPLE OLY1_POLY2_VIA OLY0 OLY1 IA NCHOR2 ETAL OLE2	OLY2 - 2 OLY0 NCHOR1 NCHOR2 OLY2 IMPLE OLY1_POLY2_VIA - 2 OLY0 OLY1 IA NCHOR2 ETAL OLE2	OLY2	OLY2 5/D/2.7 - 2 2/2.5 ² OLY0 NCHOR1 4/G/2.6 NCHOR2 OLY2 4/0/2.14 IMPLE 4/N/2.13 OLY1_POLY2_VIA 4/H/2.9 - 2 2/2.5 ² OLY0 OLY0 OLY1 4/D 4/L/2.9 NCHOR2 5/J/2.7 ETAL 3/M/2.12 OLE2 2/U/2.16	OLY2 5/D/2.7 - 2 2 / 2.5 ² OLY0 NCHOR1 4/G/2.6 NCHOR2 3/K/2.11 OLY2 4/0/2.14 IMPLE 4/N/2.13 OLY1_POLY2_VIA 4/H/2.9 - 2 2 / 2.5 ² OLY0 OLY1 3/H/2.9 NCHOR2 3/H/2.10 A 4/L/2.9 NCHOR2 5/J/2.7 ETAL 3/M/2.12 OLE2 2/U/2.16	OLY2

