Position-to-Voltage Conversion

- To sense position (i.e., displacement), use a capacitive load

\[V_o = \frac{C_D}{C_D + C_x} V_i \]

Problems With Pure-C Position Sensing

- To sense position (i.e., displacement), use a capacitive load

\[V_o = \frac{C_D}{C_D + C_x} \frac{V_i}{V_P} \]

The Op Amp Integrator Advantage

- The virtual ground provided by the ideal op amp eliminates the parasitic capacitance \(C_p \) allowing \(C_o \) to dominate

\[V_o = \frac{1}{R_2} \left(-\frac{C_o}{C_p} \right) V_i \]
Differential Position Sensing

Example: ADXL-50

Suspension Beam in Tension

Proof Mass

Sense Finger

Tethers with fixed ends

Fixed Electrodes

V_p, V_o V_P, $V_P - V_P$

C_1, C_2, C_{gd}

$V_P (C_1 + C_2) = V_o$

$V_P (C_1 + C_2) = V_o$

$V_P (C_1 + C_2) = V_o$

C_{gd} = gate-to-drain capacitance of the input MOS transistor

Includes capacitance from interconnects, bond pads, and C_{gs} of the op amp

Buffer-Bootstrapped Position Sensing

* Bootstrap the ground lines around the interconnect and bond pads
 % No voltage across C_p
 % It's effectively not there!

Effect of Finite Op Amp Gain

Total ADXL-50 Sense C ~ 100fF

Unity Gain Buffer

$N_i = n_{i1} \cdot n_{i2} \cdot n_{i3} \cdot (N_i - N_i) + N_i (1 + N_i) \cdot A_{op} \cdot N_i$

$N_{gd} = A_{op} \cdot N_i + N_i (1 + N_i) \cdot A_{op} \cdot N_i$

$C_{eff} = \frac{C_p}{1 + A_{op}}$

$N_{gd} = \frac{N_{gd}}{A_{op} \cdot N_i}$

$C_{eff} = \frac{C_p}{1 + A_{op}}$

No longer core!
Integrator-Based Diff. Position Sensing

\[i_0, i_1, i_k = \frac{V_P}{sC_0} + \frac{V_P}{sC_2} \]

\[v_0 = -\frac{V_P}{sC_0} \left(\frac{1}{sC_2} \right) = -\frac{V_P}{sC} \left(\frac{C_1 - C_2}{C_F} \right) \]

\[\Rightarrow A \text{ seemingly perfect differential sensor/amplifier output!...but only when the op amp is ideal...} \]