Lecture Outline

* Reading: Senturia, Chpt. 14
* Lecture Topics:
 - Detection Circuits
 - Velocity Sensing
 - Position Sensing
Velocity-to-Voltage Conversion

* To convert velocity to a voltage, use a resistive load

Consider the mechanical device by itself first, with output shorted. Then, taking R_L into account.

\[V_o = \frac{\omega_o Q}{k} \cdot V_i \]

Solve the problem @ resonance first, then multiply by $\Theta(s)$.

\[\text{If this structure has completely symmetrical J0 port:} \]

\[V_o = \frac{R_o}{R_{x} + R_{o}} V_i \]

- \(\omega_o \) is @ resonance (to simplify the analysis)
- \[\frac{V_o}{V_i} = \frac{R_o}{R_x + R_o} @ \text{resonance} \]
- Then, generalize to off resonance:
 \[\frac{V_o}{V_i} = \frac{R_o}{R_x + R_o} @ (\xi, \Omega), \text{where } \Omega = Q \frac{R_x}{R_{x} + R_o} \]
Velocity-to-Voltage Conversion

- To convert velocity to a voltage, use a resistive load

\[
V_o = \frac{R_o}{R_x + \frac{1}{C_x} + \frac{1}{L_x} + \frac{1}{C_y}}
\]

Brute force approach:

\[
N_o(s) = \frac{sL_x}{sL_x + \frac{1}{C_x} + \frac{1}{L_x} + \frac{1}{C_y}}
\]

Velocity Sensing Circuits
Velocity-to-Voltage Conversion

* To convert velocity to a voltage, use a resistive load.

Problems With Purely Resistive Sensing

Now, we get: (approximately)

$$N_v^0 \sim \frac{R_D}{R_x + R_D} \cdot \left(\frac{\omega_d}{\omega_0} \right)$$

Depend on both $R_x + R_D$.

Impact depends on ω_d relative to ω_0.

Includes C_0, line C, bond pad C, and next stage C.

Not good

Okay
Problems With Purely Resistive Sensing

- In general, the sensor output must be connected to the inputs of further signal conditioning circuits → input R_i of these circuits can load R_D

These change w/ hook-up → not good.

- Problem: need a sensing circuit that is immune to parasitics or loading.

- Soln: use op amps.

The TransR Amplifier Advantage

- The virtual ground provided by the ideal op amp eliminates the parasitic capacitance C_p and R_i

- The zero output resistance of the (ideal) op amp can drive virtually anything

$\text{Virtual Ground } \Rightarrow 0$ voltage across C_p

C_p effectively isn’t there! $\frac{V_0}{R_o} = \frac{R_2(s)N_4}{N_6}$
Position Sensing Circuits

Position-to-Voltage Conversion

To sense position (i.e., displacement), use a capacitive load.
Position-to-Voltage Conversion

* To sense position (i.e., displacement), use a capacitive load

\[
\frac{V_O}{V_i} = \frac{C_D}{C_D + C_b} \frac{(\omega_d)^2}{(1 + \frac{C_b}{C_D})^2 + (\frac{\omega_d}{\omega_c})^2}
\]

- DC Gain
- Low-Pass Biquad

To maximize gain \(\to 1 \), need \(C_b \to 0 \).

Problems With Pure-C Position Sensing

* To sense position (i.e., displacement), use a capacitive load

\[
\frac{V_O}{V_i} = \frac{C_D C_b}{1 + C_D C_b} \frac{\frac{1}{\omega_c} + \frac{1}{\omega'_c}}{\left(\frac{s}{\omega_c}\right)^2 + \frac{1}{\omega_c^2}}
\]

Integereation yields displacement.

To maximize gain, minimize \(C_b \).

\[
V = C_b \frac{C_D}{C_b + C_D + C_p}
\]

\[
\text{Output will get smaller!}
\]

Remedy: Suppress \(C_b \) via use of op amps.
The Op Amp Integrator Advantage

- The virtual ground provided by the ideal op amp eliminates the parasitic capacitance C_p

Differential Position Sensing
Differential Position Sensing

- **Example:** ADXL-50

![Diagram of differential position sensing](image)

\[V_0 = -V_p + \left(\frac{1}{C_1 + C_2} \right) C_1 V_P\]

- **Suspension Beam in Tension**
- **Proof Mass**
- **Sense Finger**
- **Fixed Electrodes**
- **Capacitive divider**
- **Parasitic Capacitance**

Buffer-Bootstrapped Position Sensing

- **Includes capacitance from interconnects, bond pads, and \(C_{gs} \) of the op amp**
- **Unity Gain Buffer**
- **\(+V_p \)**
- **\(-V_p \)**

\[V_0 = \frac{C_p}{C_gd + C_p} V_P \]

- **Bootstrap the ground lines around the interconnect and bond pads**
 - \& No voltage across \(C_p \)
 - \& It's effectively not there!

Includes

- \(C_{gs} \) of the input MOS transistor
Effect of Finite Op Amp Gain

\[+V_p \quad \text{Total ADXL-50 Sense } C \sim 100 \text{fF} \]

Unity Gain Buffer

\[\frac{N_v}{V_0} = A_o (N_{i2} - N_{i1}) + A_o (N_{i2} - N_{i1}) \rightarrow \frac{N_v}{V_0} \left(1 + A_o \right) = \frac{N_v}{V_0} \left(\frac{A_o}{1 + A_o} \right) \]

Get \(Z_s = \frac{N_v}{Z_s} \) as \(Z_s \left(N_{i2} - N_{i1} \right) = \frac{C_f}{1 + A_o} \)

\[C_{ef} = \frac{C_f}{1 + A_o} \quad \text{No longer poor!} \]

Ex: \(A_o = 100 \), \(C_f = 2 \text{pF} \)

\[C_{ef} = \frac{2 \text{pF}}{101} = 20 \text{fF} \]

Not negligibly compared with ADXL-50 \(C_f \sim 100 \text{fF} \)

Integrator-Based Diff. Position Sensing

\[+V_p \quad \text{for biasing} \]

\[V_0 \quad \text{Can drive next stage's } R_2 \text{ without interference to transfer function!} \]

\[\frac{N_o}{V_p} = \frac{-C_1 \cdot C_2}{C_F} \quad \Rightarrow \text{A seemingly perfect differential sensor/amplifier output!...but only when the op amp is ideal...} \]