Heterogeneous Models of Computation: An Abstract Algebra Approach

EE249 Lecture
Taken from
Roberto Passerone PhD Thesis
Objectives

- Provide the foundation to represent different semantic domains for the Metropolis metamodel
- Study the problem of heterogeneous interaction
- Formalize concepts such as abstraction and refinement
An Example of Interaction

- Combine a synchronous model with a dataflow model
- Synchronous model
 - Total order of event
- Data flow model
 - Partial order of events
- Discrete Time model
 - Metric order of events
An Example of Heterogeneous Interaction

- The interaction is derived from a common refinement of the heterogeneous models.
- The resulting interaction depends on the particular refinements employed.
- Our objective is to derive the consequences of the interaction at the higher levels of abstraction.
Data Flow Model

- Assume signals take values from a set V
- Each signal is a sequence from V (an element of V^*)
- Let A be the set of signals
- One behavior is a function
 - $f : A \rightarrow V^*$
- A data-flow agent is a set of those behaviors
Synchronous Model

- Signals are again sequences from \(V \) (elements of \(V^* \))
 ... But are synchronized

- One element of the sequence is \(g : A \rightarrow V \)

- One behavior is a sequence of those functions
 \[<g_i> \in (A \rightarrow V)^* \]

- A synchronous agent is a set of those sequences
Discrete Time Model

- Assume time is represented by the positive integers \mathbb{N}
- Then define a behavior
 - $h: \mathbb{N} \rightarrow (A \rightarrow V)$
- A discrete time agent is a set of those functions
Discrete to Synchronous Abstraction

Synchronous

Discrete

* * * * *

a b e

n p r

g j l

o n p p r s

a b c e e

g g j j l m

* * * * *
Discrete to Data Flow Abstraction
Interaction Propagation

Synchronous

Data flow

Discrete

1. Refinement
2. Composition
3. Projection
4. Abstraction
Objectives

◆ Provide a semantic foundations for integrating different models of computation
 ∗ Independent of the design language
 ∗ Not just specific to the Metropolis meta-model

◆ Maximize flexibility for using different levels of abstraction
 ∗ For different parts of the design
 ∗ At different stages of the design process
 ∗ For different kinds of analysis

◆ Support many forms of abstraction
 ∗ Model of computation (model of time, synchronization, etc.)
 ∗ Scoping
 ∗ Structure (hierarchy)
Overview

Meta Model

Data Flow

Pre-Post

Process Networks

Discrete Time

Non-metric Time

Continuous Time

Agent Algebras

Conservative Approximations

Domain of agents with operations: projection, renaming and composition
Scope

◆ Concentrate on
 ◇ Natural semantic domains (sets of agents)
 ◇ Relations and functions over semantic domains
 ◇ Relationships between semantic domains and their relations and functions

◆ Defer worrying about specific abstract syntaxes and semantic functions
 ◇ Convenient for manual, formal reasoning
 ◇ De-emphasizing executable and finitely-representable models (for now)
Agents and Behaviors

- For each model of computation we always distinguish between
 - the domain of individual behaviors
 - the domain of agents

- For different models of computation individual behaviors can be very different mathematical objects
 - We always call these objects traces
 - The nature of the elements of the carrier is irrelevant!

- An agent is primarily a set P of traces
 - We call them trace structures
 - Also includes the signature: $T = (\gamma, P)$
Trace and Trace Structure Algebras

Model of individual behaviors

Set of traces C
- Trace algebra
 - Projection
 - Renaming
 - Concatenation

Set of trace structures A
- Trace structure algebra
 - Composition
 - Scoping
 - Instantiation

A trace structure contains a set of traces

Model of agents (semantic domain)
Essential Elements

- Must be able to name elements of the model
 - Variables, actions, signals, states
 - We do not distinguish among them and refer to them collectively as a set of signals W

- Each agent has an alphabet and a signature
 - Alphabet: $A \subseteq W$
 - Signature: $\gamma = A, \gamma = (I, O)$, etc.

- The operations on traces and trace structures must satisfy certain axioms
 - The axioms formalize the intuitive meaning of the operations
 - They also provide hypothesis used in proving theorems
 - Trade-off between generality and structure
Metric Time Traces

\[
\gamma = (V_R, V_N, M_I, M_O)
\]
\[
x = (\gamma, \delta, f)
\]
\[
f(v) = [0, \delta] \mapsto R
\]
\[
f(n) = [0, \delta] \mapsto N
\]
\[
f(a) = [0, \delta] \mapsto \{0, 1\}
\]

- **Model time as a metric space**
 - Can talk about the difference in time between points in the behavior in quantitative terms
 - Able to specify timing constraints in quantitative terms

- **Able to represent continuous as well as discrete behavior**

- **Projection and renaming easily defined on the functions**
Metric Time Model: Traces

◆ A trace \(x \) models one execution of a hybrid system:

◆ Signature \(\gamma = (\)

 \(V_R \): real valued var's,

 \(V_N \): integer valued var's,

 \(M_I \): input actions,

 \(M_O \): output actions)

◆ The alphabet \(A \) of \(x \) is the union of the components of \(\gamma \)

◆ \(\delta \) is a non-negative real number

 ◦ Length (in time) of \(x \)

 ◦ Can be infinity

◆ \(f \) gives values as a function of time:

 \(f: V_R \rightarrow [0, \delta] \rightarrow \mathbb{R} \),

 \(f: V_N \rightarrow [0, \delta] \rightarrow \mathbb{N} \),

 \(f: M_I \rightarrow [0, \delta] \rightarrow \{0, 1\} \),

 \(f: M_O \rightarrow [0, \delta] \rightarrow \{0, 1\} \).
Metric Time Model: Operations on Traces

- Let $x' = \text{proj}(B)(x)$
 - represents scoping
 - B is a subset of A
 - γ' and f' are restricted to variables and actions in B
 - $\delta' = \delta$

- Let $x' = \text{rename}(r)(x)$
 - represents instantiation
 - r is a one-to-one function with domain A
 - variables and actions in γ' and f' are renamed by r
 - $\delta' = \delta$

- Let $x'' = x \cdot x'$
 (concatenation)
 - represents sequential composition
 - $\gamma' = \gamma$, d is finite, and end of x matches beginning of x'
 - $\gamma'' = \gamma$
 - $d'' = d + d'$
 - $f''(v, t)$ is equal to $f(v, t)$ for $t \leq d$
 $f'(v, t - d)$ for $t \geq d$
A trace structure $T = (\gamma, P)$ models a process or an agent of a hybrid system

- P is a set of traces with signature γ

Traits:

- T refines T' if $P \subseteq P'$
- Natural model for physical components (such as those described with differential equations, possibly with discrete control variables)
- Too detailed for many other aspects of embedded systems
- Not a finite representation
 - Finite representations, synthesis and verifications algorithms are clearly important, but not a focus of this class
- Trace structures constructed the same way for any trace algebra
Metric Time Model: Operations on Trace Structures

- Let $T' = \text{proj}(B)(T)$
 - B is a subset of A
 - γ' is restricted to variables and actions in B
 - $P' = \text{proj}(B)(P)$

- Let $T' = \text{rename}(r)(T)$
 - r is a one-to-one function with domain A
 - variables and actions in γ' are renamed by r
 - $P' = \text{rename}(r)(P)$

- Let $T'' = T \parallel T'$ (par. comp.)
 - γ'' combines γ and γ'
 - P'' maximal set s.t.
 - $P = \text{proj}(A)(P'')$
 - $P' = \text{proj}(A')(P'')$

- Let $x'' = x \cdot x'$ (seq. comp.)
 - $\gamma' = \gamma$
 - $P'' = P \cdot P'$ (roughly)
Non-metric Time Traces

\[\gamma = (V_R, V_N, M_I, M_O) \]
\[x = (\gamma, L) \]
\[m(t) = V_R \rightarrow R \]
\[V_N \rightarrow N \]
\[M \rightarrow \{0, 1\} \]

- Model time as a non-metric space
 - Can only talk about precedence in time (including dense time)
- Based on Totally Ordered Multi-Sets
 - Totally ordered vertex set \(V \)
 - Labeling function \(\mu \) from the vertex set \(V \) to a set of actions \(\Sigma \)
 - We do not distinguish isomorphic vertex sets
Pre-Post Traces

\(\gamma = (M_I, M_O) \)
\(x = (\gamma, s_i, s_f) \)

- Model only pre- and post-conditions (not intermediate states)
- Suitable for studying the semantics of programming languages
- Trace theory version of Hoare triples
Relationships between Semantic Domains

◆ Each semantic domain has a refinement order
 ◆ Based on trace containment
 ◆ $T_1 \subseteq T_2$ means T_1 is a refinement of T_2
 ◆ Guiding intuition: $T_1 \subseteq T_2$ means T_1 can be substituted for T_2

◆ Abstraction mapping
 ◆ If a function H between semantic domains is monotonic, detailed implies abstract: If $T_1 \subseteq T_2$ then $H(T_1) \subseteq H(T_2)$
 ◆ Analogy for real numbers r and s: If $r \leq s$ then $\lceil r \rceil \leq \lceil s \rceil$

◆ Conservative approximations
 ◆ A pair of functions $\Psi = (\Psi_l, \Psi_u)$ is a conservative approximation if $\Psi_u(T_1) \subseteq \Psi_l(T_2)$ implies $T_1 \subseteq T_2$
 ◆ Analogy: $\lceil r \rceil \leq \lceil s \rceil$ implies $r \leq s$
 ◆ Abstract implies detailed
Trace and Trace Structure Algebras

Trace algebra \(C \)

Trace structure algebra \(A \)

Upper Bound

Lower Bound

"Abstract" Domain

\(\Psi_u \)

\(\Psi_l \)

\(\Psi_{\text{inv}} \)

"Detailed" Domain
Deriving Conservative Approximations

Homomorphism: mapping that commutes with the operations of projection, renaming and concatenation on traces
Homomorphism

- From metric to non-metric
 - Must define a notion of event in the metric model
 - Must define how to construct the corresponding vertex set

- From non-metric to pre-post
 - Simply remove the intermediate steps and keep only the end-points
Metric to Non-Metric Traces

Event: point in time where the function changes value

Homomorphism discards non-event points

The information about metric time is effectively lost
From Metric to Non-metric Time

- \(f \) is stable at \(t_0 \) if there is \(\varepsilon > 0 \) such that \(f \) is constant on \([t_0 - \varepsilon, t_0]\)
- \(f \) has an event at \(t_0 \) if it is not stable
- Vertex Set \(V = \{ t_0 \mid f \) has an event at \(t_0 \} \)
Building the Upper Bound

◆ Let P be a set of traces, and consider the natural extension to sets $h(P)$ of h

◆ Clearly $P \subseteq h^{-1}(h(P))$
 ♦ Because h is many-to-one
 ♦ This indeed is an upper bound!
 ♦ Equality holds if h is one-to-one

◆ Hence define
 ♦ $\Psi_u(T) = (\gamma, h(P))$
Building the Upper Bound
Building the Lower Bound

- We want \(P \supseteq h^{-1}(\text{lb of } P) \)
- If \(x \) is not in \(P \), then \(h(x) \) should not be in the lower bound of \(P \)
- Hence define
 \[\Psi_1(T) = h(P) - h(B_c(A) - P) \]
- There is a tighter lower bound
Building the Lower Bound

\[h(P) - h(B_c(A) - P) \]

\[h^{-1}(h(P) - h(B_c(A) - P)) \]

\[h(B_c(A) - P) \]

\[B_c(A) - P \]
Conservative Approximations: Inverses

- Apply Ψ_u
- Apply Ψ_l
- Consider T such that

$$\Psi_u(T) = \Psi_l(T) = T'$$
Conservative Approximations: Inverses

- Apply Ψ_u
- Apply Ψ_l
- Consider T such that $\Psi_u(T) = \Psi_l(T) = T'$
- Then $\Psi_{inv}(T') = T$
Conservative Approximations: Inverses

- Apply Ψ_u
- Apply Ψ_l
- Consider T such that
 \[
 \Psi_u(T) = \Psi_l(T) = T'
 \]
- Then $\Psi_{\text{inv}}(T') = T$
- Can be used to embed high-level model in low level
Combining MoCs

Want to compose T_1 and T_2 from different trace structure algebras

- Construct a third, more detailed trace algebra, with homomorphisms to the other two
- Construct a third trace structure algebra
- Construct cons. approximations and their inverses
- Map T_1 and T_2 to T_1' and T_2' in the third trace structure algebra
- Compose T_1' and T_2'
Conclusions

- Semantic foundations for the Metropolis meta-model
- All models of computation of importance “reside” in a unified framework
 - They may be better understood and optimized
- Trace Algebra used as the underlying mathematical machinery
 - Showed how to formalize a semantic domain for several models of computation
- Conservative approximations and their inverses used to relate different models