
Metropolis MetamodelMetropolis Metamodel

Metropolis Objects

• Metropolis elements adhere to a “separation of concerns” point of view.

Proc1P1 P2

Active Objects
Sequential Executing Thread

• Processes (Computation)

Copyright A. Sangiovanni-Vincentelli

I1 I2Media1

QM1

Passive Objects
Implement Interface Services

Schedule access to
resources and quantities

• Media (Communication)

• Quantity Managers (Coordination)

Metro. Netlists and Events Problem Statement
Approach
Contribution

Proc1

P

Scheduled Netlist Scheduling Netlist

Global

Metropolis Architectures are created via two netlists:
• Scheduled – generate events1 for services in the scheduled netlist.
• Scheduling – allow these events access to the services and annotate
events with quantities.

Proc2

P

Event1 –
represents a
transition in the
action automata

Related Work

Copyright A. Sangiovanni-Vincentelli

P1

Media1 QM1

Global
Time

I1

I2 1. E. Lee and A. Sangiovanni-Vincentelli, A Unified Framework for
Comparing Models of Computation, IEEE Trans. on Computer
Aided Design of Integrated Circuits and Systems, Vol. 17, N. 12,
pg. 1217-1229, December 1998

P2
action automata
of an object. Can
be annotated
with any number
of quantities.
This allows
performance
estimation.

Key Modeling Concepts

• An event is the fundamental concept in the
framework
– Represents a transition in the action automata of an object

– An event is owned by the object that exports it

– During simulation, generated events are termed as event
instances

– Events can be annotated with any number of quantities

– Events can partially expose the state around them,

Copyright A. Sangiovanni-Vincentelli

– Events can partially expose the state around them,
constraints can then reference or influence this state

• A service corresponds to a set of sequences of events
– All elements in the set have a common begin event and a

common end event

– A service may be parameterized with arguments

1. E. Lee and A. Sangiovanni-Vincentelli, A Unified Framework for Comparing Models of Computation,
IEEE Trans. on Computer Aided Design of Integrated Circuits and Systems, Vol. 17, N. 12, pg. 1217-1229, December 1998

Action Automata

• Processes take actions.
– statements and some expressions, e.g.

y = z+port.f();, z+port.f(), port.f(), i < 10, …
– only calls to media functions are observable actions

• An execution of a given netlist is a sequence of vectors of
events.

Copyright A. Sangiovanni-Vincentelli

– event : the beginning of an action, e.g. B(port.f()),
the end of an action, e.g. E(port.f()), or null N

– the i-th component of a vector is an event of the i-th
process

• An execution is legal if
– it satisfies all coordination constraints, and
– it is accepted by all action automata.

Execution semantics

Action automaton:

– one for each action of each process

• defines the set of sequences of events that can happen
in executing the action

– a transition corresponds to an event:

• it may update shared memory variables:

– process and media member variables

Copyright A. Sangiovanni-Vincentelli

– process and media member variables
– values of actions-expressions

• it may have guards that depend on states of other action
automata and memory variables

– each state has a self-loop transition with
the null N event.

– all the automata have their alphabets in
common:

• transitions must be taken together in different automata,
if they correspond to the same event.

Action Automata

B y=x+1 B x+1 E x+1 E y=x+1

y:=Vx+1

B x+1 E x+1 E y=x+1

y:=any

* = write y* * *

B x+1 E x+1

y=x+1

• y=x+1;

Copyright A. Sangiovanni-Vincentelli
Return

B x+1 E x+1

Vx+1 :=x+1

E x+1

Vx+1 :=any

write x

x+1

0
0
0

B y=x+1 B x+1 E x+1NN N E y=x+1

5
0
0

5
5
0

1
0
0

1
1
0

Vx+1
y
x

Semantics summary

• Processes run sequential code concurrently,

each at its own arbitrary pace.

• Read-Write and Write-Write hazards may cause

unpredictable results

– atomicity has to be explicitly specified.

• Progress may block at synchronization points

Copyright A. Sangiovanni-Vincentelli

• Progress may block at synchronization points

– awaits

– function calls and labels to which awaits or constraints refer.

• The legal behavior of a netlist is given by a set

of sequences of event vectors.

– multiple sequences reflect the non-determinism of the
semantics:

concurrency, synchronization (awaits and constraints)

Metropolis Architecture Representation

Architecture components
An architecture component specifies services, i.e.

• what it can do

• how much it costs

Copyright A. Sangiovanni-Vincentelli

Meta-model: architecture components
An architecture component specifies services, i.e.

• what it can do:

• how much it costs:

interface BusMasterService extends Port {

update void busRead(String dest, int size);

interfaces, methods, coordination (awaits, constraints), netlists

quantities, annotated with events, related over a set of events

Copyright A. Sangiovanni-Vincentelli

medium Bus implements BusMasterService … {
port BusArbiterService Arb;
port MemService Mem; …
update void busRead(String dest, int size) {

if(dest== …) Mem.memRead(size);
}

…

update void busRead(String dest, int size);

update void busWrite(String dest, int size);

}

Meta-model: quantities

• The domain D of the quantity, e.g. real for the global time,

• The operations and relations on D, e.g. subtraction, <, =,

• The function from an event instance to an element of D,

• Axioms on the quantity, e.g.

the global time is non-decreasing in a sequence of vectors of any

feasible execution.
class GTime extends Quantity {

double t;

Copyright A. Sangiovanni-Vincentelli

double t;
double sub(double t2, double t1){...}
double add(double t1, double t2){…}
boolean equal(double t1, double t2){ ... }
boolean less(double t1, double t2){ ... }
double A(event e, int i){ ... }
constraints{
forall(event e1, event e2, int i, int j):
GXI.A(e1, i) == GXI.A(e2, j) -> equal(A(e1, i), A(e2, j)) &&
GXI.A(e1, i) < GXI.A(e2, j) -> (less(A(e1, i), A(e2, j)) ||

equal(A(e1, i), A(e2. j)));
}}

Meta-model: architecture components

• This modeling mechanism is generic, independent of services
and cost specified.

• Which levels of abstraction, what kind of quantities, what kind of
cost constraints should be used to capture architecture
components?

– depends on applications: on-going research
Transaction:
Services:

- fuzzy instruction set for SW, execute() for HW

CPU ASIC2ASIC1

Sw1 HwSw2 Hw

Copyright A. Sangiovanni-Vincentelli

- fuzzy instruction set for SW, execute() for HW

- bounded FIFO (point-to-point)

Quantities:

- #reads, #writes, token size, context switches

Physical:
Services: full characterization

Quantities: time

Sw1 HwSw2

Sw I/F Channel I/F

Wrappers

Hw

Bus I/F

C-Ctl Channel Ctl

B-I/F
CPU-IOs

e.g. PIBus 32b

e.g. OtherBus 64b...

C-Ctl

RTOS

Virtual BUS:
Services:

- data decomposition/composition

- address (internal v.s. external)

Quantities: same as above, different weights

Quantity resolution
The 2-step approach to resolve quantities at each state of a netlist being

executed:

1. quantity requests

for each process Pi, for each event e that Pi can take, find all the quantity
constraints on e.

In the meta-model, this is done by explicitly requesting quantity
annotations at the relevant events, i.e. Quantity.request(event,
requested quantities).

2. quantity resolution

Copyright A. Sangiovanni-Vincentelli

2. quantity resolution

find a vector made of the candidate events and a set of quantities
annotated with each of the events, such that the annotated quantities
satisfy:

– all the quantity requests, and

– all the axioms of the Quantity types.

In the meta-model, this is done by letting each Quantity type implement
a resolve() method, and the methods of relevant Quantity types are
iteratively called.

– theory of fixed-point computation

Quantity resolution

• The 2-step approach is same as how schedulers work, e.g. OS
schedulers, BUS schedulers, BUS bridge controllers.

• Semantically, a scheduler can be considered as one that resolves
a quantity called execution index.

• Two ways to model schedulers:

1. As processes:

– explicitly model the scheduling protocols using the meta-model

Copyright A. Sangiovanni-Vincentelli

– explicitly model the scheduling protocols using the meta-model
building blocks

– a good reflection of actual implementations

2. As quantities:

– use the built-in request/resolve approach for modeling the
scheduling protocols

– more focus on resolution (scheduling) algorithms, than protocols:
suitable for higher level abstraction models

Architecture Modeling Related Work
1. David C. Luckham and James Vera, An Event-Based

Architecture Definition Language , IEEE Transactions on
Software Engineering, Vol. 21, No 9, pg. 717-734, Sep. 1995.

2. Ingo Sander and Axel Jantsch, System Modeling and
Transformational Design Refinement in ForSyDe, IEEE
Transactions on CAD, Vol. 23, No 1, pg. 17-32, Jan. 2004.

3. Paul Lieverse, Pieter van der Wolf, Ed Deprettere, and Kees
Vissers, A Methodology for Architecture Exploration of
Heterogeneous Signal Processing Systems, IEEE Workshop in

Copyright A. Sangiovanni-Vincentelli

Vissers, A Methodology for Architecture Exploration of
Heterogeneous Signal Processing Systems, IEEE Workshop in
Signal Processing Systems, Taipei, Taiwan, 1999.

Metropolis Rapide1 ForSyDe2 SPADE3

Mapping x x x x

Quantity Managers x No No No; collectors
in bldg blocks

Event Based x x x No

Pure Architecture Model x x No;
Functional
tied to Arch.

x

Return

Programmable Arch. Modeling

• Computation Services

• Communication Services

PPC405 MicroBlaze SynthSlaveSynthMaster

Computation Services
Read (addr, offset, cnt, size), Write(addr, offset, cnt, size),
Execute (operation, complexity)

Copyright A. Sangiovanni-Vincentelli

• Communication Services

• Other Services

Processor
Local
Bus
(PLB)

On-Chip
Peripheral

Bus
(OPB)

OPB/PLB Bridge
Mapping
Process

BRAM

Task Before Mapping
Read (addr, offset, cnt, size)
Task After Mapping
Read (0x34, 8, 10, 4)

Communication Services
addrTransfer(target, master)

addrReq(base, offset, transType, device)
addrAck(device)

dataTransfer(device, readSeq, writeSeq)
dataAck(device)

Programmable Arch. Modeling

• Coordination Services

PPC Sched OPB SchedPLB Sched
MicroBlaze
Sched

BRAM Sched General Sched

Copyright A. Sangiovanni-Vincentelli

Request (event e)

-Adds event to pending
queue of requested events

Resolve()

-Uses algorithm to select an
event from the pending queue

PostCond()

-Augment event with information
(annotation). This is typically the
interaction with the quantity manager

GTime

Prog. Platform Characterization

1. Create template system
description.

2. Generate many
permutations of the

Need to tie the model to actual implementation data!

Copyright A. Sangiovanni-Vincentelli

permutations of the
architecture using this
template and run them
through programmable
platform tool flow.

3. Extract the desired
performance information
from the tool reports for
database population.

Prog. Platform Characterization

Create database ONCE prior to
simulation and populate with
independent (modular)
information.

1. Data detailing
performance based on
physical implementation.

2. Data detailing the

Copyright A. Sangiovanni-Vincentelli

From Char Flow Shown

From Metro Model Design

From ISS for PPC

1. Douglas Densmore, Adam Donlin, A.Sangiovanni-Vincentelli, FPGA Architecture Characterization in
System Level Design, Submitted to CODES 2005.

2. Adam Donlin and Douglas Densmore, Method and Apparatus for Precharacterizing Systems for Use
in System Level Design of Integrated Circuits, Patent Pending.

2. Data detailing the
composition of
communication transactions.

3. Data detailing the
processing elements
computation.

Work with Xilinx Research Labs

Modeling & Char. Review

DedHW Sched

Global

Time
PPC Sched

Task1 Task2

PPC

Task3 Task4

DEDICATED HW

Scheduling Netlist

Copyright A. Sangiovanni-Vincentelli

PLB Sched

BRAM Sched

Time

BRAM

PLB

Scheduled Netlist Characterizer
Media (scheduled) Process

Quantity Manager
Quantity

Enabled Event

Disabled Event

Arch. Refinement Verification

• Architectures often involve hierarchy and multiple abstraction levels.

• These techniques are limited if it is not possible to check if elements in
hierarchy or less abstract components are implementations of their
counterparts.

• Asks “Can I substitute M1 for M2?”

1. Representing the internal structure of a component.

2. Recasting an architectural description in a new style.

Copyright A. Sangiovanni-Vincentelli

2. Recasting an architectural description in a new style.

3. Applying tools developed for one style to another style.

Refinement Technique Description Metropolis

Style/Pattern Based Define template components. Prove they have a
desired relationship once. Build arch. from them.

Potential; TTL
YAPI

Event Based Properties (behaviors) expressed as event lists.
Explicitly look for this event patterns.

Discussed

Interface Based Create structure capturing all behavior of a
components interface. Compare two models.

Discussed

D. Garlan, Style-Based Refinement for Software Architectures, SIGSOFT 96, San Francisco, CA, pg. 72-75.

1. Select an application
and understand its
behavior.

2. Create a Metropolis
functional model which
models this behavior.

3. Assemble an
architecture from library
services or create your
own services.

4. Map the
functionality to the
architecture.

5. Extract a structural
file from the top level
netlist of the
architecture created.

Mapping
Process
Mapping
Process

Mapping
ProcessMapping

Process

Preprocessing DCT Quantization Huffman

JPEG Encoder Function Model (Block Level)Example Design

Copyright A. Sangiovanni-Vincentelli

File for Xilinx EDK
Tool Flow

IP Library

On-Chip
Peripheral

Bus
(OPB)

SynthMaster

SynthSlave

MicroBlaze
BRAMBRAM

Structure
Extractor

Top Level Netlist

Example Design Cont. Problem Statement
Approach
Contribution

File for Xilinx EDK
Tool Flow

Permutation Generator

1. Feed the captured
structural file to the
permutation generator.

2. Feed the permutations to the
Xilinx tools and extract the data.
3. Capture execution info for
software and hardware services.
4. Provide transaction info for
communication services.

Permutation 1 Permutation 2 Permutation N

Copyright A. Sangiovanni-Vincentelli

ISS Info
Char
DataTransaction

Info

Platform Characterization Tool (Xilinx EDK/ISE Tools)

Characterizer Database

Software Routines
int DCT (data){
Begin
calculate …
…
} Automatic32 Bit Read = Ack, Addr, Data, Trans, Ack

Manual

Hardware Routines
DCT1 = 10 Cycles
DCT2 =5 Cycles
FFT = 5 Cycles

Manual

Example Design Cont.

Preprocessing DCT Quantization Huffman

JPEG Encoder Function Model (Block Level)

On-Chip

SynthMasterMicroBlaze

Mapping
Process
Mapping
Process

Mapping
ProcessMapping

Process

2. Refine design to meet performance
requirements.

1. Simulate the design and observe
the performance.

Execution time 100ms
Bus Cycles 4000
Ave Memory Occupancy 500KB

Backend Tool Process:
1. Abstract Syntax Tree (AST) retrieves
structure.

2. Control Data Flow Graph - Depth
FORTE – Intel Tool
Reactive Models – UC Berkeley

3. Event Traces – Refinement

Copyright A. Sangiovanni-Vincentelli

On-Chip
Peripheral

Bus
(OPB)

SynthSlave

BRAMBRAM

ISS Info
Char
DataTransaction

Info

requirements.

3. Use Refinement Verification to check
validity of design changes.

• Depth, Vertical, or Horizontal
• Refinement properties

BRAM

Concurrent
Vertical
Refinement

New Algorithm

Depth

Verification
Tool

Yes? No?

Execution time 200ms
Bus Cycles 1000
Ave Memory Occupancy
100KB

4. Re-simulate to see if your goals are
met.

3. Event Traces – Refinement
Properties.

Vertical Refinement
Horizontal Refinement

