Design of Embedded Systems: Models, Validation and Synthesis (EE 249)—Lecture 9

Prof. Dr. Reinhard von Hanxleden

Christian-Albrechts Universität Kiel
Department of Computer Science
Real-Time Systems and Embedded Systems Group

4 October 2007

Last compiled: 4th October 2007, 15:13 hrs

Synchronous Languages:
Lustre
Overview

A Short Tour

Examples

Clock Consistency

Arrays and Recursive Nodes
Lustre

- A synchronous data flow language
- Developed since 1984 at IMAG, Grenoble [HCRP91]
- Also graphical design entry available (SAGA)
- Moreover, the basis for SCADE (now marketed by Esterel Technologies), a tool used in software development for avionics and automotive industries
 ~ Translatable to FSMs with finitely many control states
 - Same advantages as Esterel for hardware and software design

Thanks to Klaus Schneider
(http://rsg.informatik.uni-kl.de/people/schneider/) for providing part of the following material
Lustre Modules

General form:

```plaintext
node f(x₁:α₁, ..., xₙ:αₙ) returns (y₁:β₁,...,yₘ:βₘ)
var z₁:γ₁,...,zₙ:γₙ;
let
  z₁ = τ₁; ...; zₙ = τₙ;
  y₁ = π₁; ...; yₘ = πₙ;
  assert ϕ₁; ...; assert ϕₗ;
tel
```

where

- f is the name of the module
- Inputs x_i, outputs y_i, and local variables z_j
- Assertions $ϕ_i$ (boolean expressions)
Lustre Programs

- Lustre programs are a list of modules that are called nodes.
- All nodes work synchronously, i.e. at the same speed.
- Nodes communicate only via inputs and outputs.
- No broadcasting of signals, no side effects.
- **Equations** $z_i = \tau_i \text{ and } y_i = \pi_i$ are not assignments.
- Equations must have solutions in the mathematical sense.
As \(z_i = \tau_i \) and \(y_i = \pi_i \) are equations, we have the **Substitution Principle**:
The definitions \(z_i = \tau_i \) and \(y_i = \pi_i \) of a Lustre node allow one to replace \(z_i \) by \(\tau_i \) and \(y_i \) by \(\pi_i \).

Behavior of \(z_i \) and \(y_i \) completely given by equations \(z_i = \tau_i \) and \(y_i = \pi_i \).
Assertions

- Assertions `assert \phi` do not influence the behavior of the system.
- `assert \phi` means that during execution, \(\phi \) must invariantly hold.
- Equation \(X = E \) equivalent to assertion `assert(X = E)`.
- Assertions can be used to optimize the code generation.
- Assertions can be used for simulation and verification.
Data Streams

- All variables, constants, and all expressions are streams
- Streams can be composed to new streams
- Example: given $x = (0, 1, 2, 3, 4, \ldots)$ and $y = (0, 2, 4, 6, 8, \ldots)$, then $x + y$ is the stream $(0, 3, 6, 9, 12, \ldots)$
- However, streams may refer to different clocks
- Each stream has a corresponding clock
Data Types

- Primitive data types: `bool`, `int`, `real`
- Imported data types: `type α`
 - Similar to Esterel
 - Data type is implemented in host language
- Tuples of types: \(α_1 \times \ldots \times α_n \) is a type
 - Semantics is Cartesian product
Expressions (Streams)

- Every declared variable x is an expression
- Boolean expressions:
 - τ_1 and τ_2, τ_1 or τ_2, not τ_1
- Numeric expressions:
 - $\tau_1 + \tau_2$ and $\tau_1 - \tau_2$, $\tau_1 \times \tau_2$ and τ_1 / τ_2, $\tau_1 \text{ div } \tau_2$ and $\tau_1 \text{ mod } \tau_2$
- Relational expressions:
 - $\tau_1 = \tau_2$, $\tau_1 < \tau_2$, $\tau_1 \leq \tau_2$, $\tau_1 > \tau_2$, $\tau_1 \geq \tau_2$
- Conditional expressions:
 - if b then τ_1 else τ_2 for all types
Assume implementation of a node f with inputs $x_1: \alpha_1, \ldots, x_n: \alpha_n$ and outputs $y_1: \beta_1, \ldots, y_m: \beta_m$.

Then, f can be used to create new stream expressions, e.g., $f(\tau_1, \ldots, \tau_n)$ is an expression:

- Of type $\beta_1 \times \ldots \times \beta_m$
- If (τ_1, \ldots, τ_n) has type $\alpha_1 \times \ldots \times \alpha_n$
Vector Notation of Nodes

By using tuple types for inputs, outputs, and local streams, we may consider just nodes like

```plaintext
node f(x:α) returns (y:β)
var z:γ;
let
  z = τ;
  y = π;
  assert ϕ;
.tel
```

Clock-Operators

- All expressions are streams
- **Clock-operators** modify the temporal arrangement of streams
- Again, their results are streams
- The following clock operators are available:
 - `pre τ` for every stream `τ`
 - `τ₁ → τ₂`, (pronounced “followed by”) where `τ₁` and `τ₂` have the same type
 - `τ₁ when τ₂` where `τ₂` has boolean type (downsampling)
 - `current τ` (upsampling)
As already mentioned, streams may refer to different clocks. We associate with every expression a list of clocks. A clock is thereby a stream φ of boolean type. Whenever this stream φ is true (considered at its clock), a point in time is selected that belongs to the new clock hierarchy.
Clock-Hierarchy

- \(\text{clocks}(\tau) := [] \) if expression \(\tau \) does not contain any clock operator
- \(\text{clocks} (\text{pre}(\tau)) := \text{clocks}(\tau) \)
- \(\text{clocks}(\tau_1 \rightarrow \tau_2) := \text{clocks}(\tau_1), \) where \(\text{clocks}(\tau_1) = \text{clocks}(\tau_2) \) is required
- \(\text{clocks}(\tau \text{ when } \varphi) := [\varphi, c_1, \ldots, c_n], \) where \(\text{clocks}(\varphi) = \text{clocks}(\tau) = [c_1, \ldots, c_n] \)
- \(\text{clocks}(\text{current}(\tau)) := [c_2, \ldots, c_n], \) where \(\text{clocks}(\tau) = [c_1, \ldots, c_n] \)
Semantics of Clock-Operators

- \([\text{pre}(\tau)] := (\bot, \tau_0, \tau_1, \ldots)\), provided that \([\tau] = (\tau_0, \tau_1, \ldots)\)

- \([\tau \rightarrow \pi] := (\tau_0, \pi_1, \pi_2, \ldots)\), provided that \([\tau] = (\tau_0, \tau_1, \ldots)\) and \([\pi] = (\pi_0, \pi_1, \ldots)\)

- \([\tau \text{ when } \varphi] = (\tau_{t_0}, \tau_{t_1}, \tau_{t_2}, \ldots)\), provided that
 - \([\tau] = (\tau_0, \tau_1, \ldots)\)
 - \(\{t_0, t_1, \ldots\}\) is the set of points in time where \([\varphi]\) holds

- \([\text{current}(\tau)] = (\bot, \ldots, \bot, \tau_{t_0}, \ldots, \tau_{t_0}, \tau_{t_1}, \ldots, \tau_{t_1}, \tau_{t_2}, \ldots)\), provided that
 - \([\tau] = (\tau_0, \tau_1, \ldots)\)
 - \(\{t_0, t_1, \ldots\}\) is the set of points in time where the highest clock of \(\text{current}(\tau)\) holds
Example for Semantics of Clock-Operators

<table>
<thead>
<tr>
<th>φ</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ</td>
<td>τ_0</td>
<td>τ_1</td>
<td>τ_2</td>
<td>τ_3</td>
<td>τ_4</td>
<td>τ_5</td>
<td>τ_6</td>
</tr>
</tbody>
</table>

$\text{pre}(\tau)$	\perp	τ_0	τ_1	τ_2	τ_3	τ_4	τ_5
$\tau \rightarrow \text{pre}(\tau)$	τ_0	τ_0	τ_1	τ_2	τ_3	τ_4	τ_5
τ when φ	τ_1	τ_3	τ_6				
$\text{current}(\tau$ when $\varphi)$	\perp	τ_1	τ_1	τ_3	τ_3	τ_3	τ_6

- Note: $[\tau$ when $\varphi] = (\tau_1, \tau_3, \tau_6, \ldots)$, i.e., gaps are not filled!
- This is done by $\text{current}(\tau$ when $\varphi)$
Example for Semantics of Clock-Operators

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>n = (0 -> pre(n)+1)</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>...</td>
</tr>
<tr>
<td>e = (1 -> not pre(e))</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>n when e</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>...</td>
</tr>
<tr>
<td>current(n when e)</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>...</td>
</tr>
<tr>
<td>current (n when e) div 2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>...</td>
</tr>
</tbody>
</table>
Example for Semantics of Clock-Operators

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n = 0 \rightarrow \text{pre}(n)+1)</td>
<td></td>
</tr>
<tr>
<td>(d_2 = (n \text{ div } 2) \times 2 = n)</td>
<td></td>
</tr>
<tr>
<td>(n_2 = n \text{ when } d_2)</td>
<td></td>
</tr>
<tr>
<td>(d_3 = (n \text{ div } 3) \times 3 = n)</td>
<td></td>
</tr>
<tr>
<td>(n_3 = n \text{ when } d_3)</td>
<td></td>
</tr>
<tr>
<td>(d_3' = d_3 \text{ when } d_2)</td>
<td></td>
</tr>
<tr>
<td>(n_6 = n_2 \text{ when } d_3')</td>
<td></td>
</tr>
<tr>
<td>(c_3 = \text{current}(n_2 \text{ when } d_3'))</td>
<td></td>
</tr>
</tbody>
</table>
Example: Counter

```
node Counter(x0, d:int; r:bool) returns (n:int)
let
  n = x0 -> if r then x0 else pre(n) + d
tel
```

- Initial value of n is x_0
- If no reset r then increment by d
- If reset by r, then initialize with x_0
- $Counter$ can be used in other equations, e.g.
 - $even = Counter(0, 2, 0)$ yields the even numbers
 - $mod_5 = Counter(0, 1, pre(mod_5) = 4)$ yields numbers mod 5
ABRO in Lustre

```lustre
node EDGE(X:bool) returns (Y:bool);
let
    Y = false -> X and not pre(X);
tel

node ABRO (A,B,R:bool) returns (O: bool);
    var seenA, seenB : bool;
    let
        O = EDGE(seenA and seenB);
        seenA = false -> not R and (A or pre(seenA));
        seenB = false -> not R and (B or pre(seenB));
tel
```
Causality Problems in Lustre

- Synchronous languages have causality problems
- They arise if preconditions of actions are influenced by the actions
- Therefore they require to solve fixpoint equations
- Such equations may have none, one, or more than one solutions

〜 Analogous to Esterel, one may consider reactive, deterministic, logically correct, and constructive programs
Causality Problems in Lustre

- \(x = \tau \) is acyclic, if \(x \) does not occur in \(\tau \) or does only occur as subterm \(\text{pre}(x) \) in \(\tau \)
- **Examples:**
 - \(a = a \) and \(\text{pre}(a) \) is cyclic
 - \(a = b \) and \(\text{pre}(a) \) is acyclic
- Acyclic equations have a unique solution!
- Analyze cyclic equations to determine causality?
- **But:** Lustre only allows acyclic equation systems
- Sufficient for signal processing
Malik’s Example

However, some interesting examples are cyclic

\[
\begin{align*}
y &= \text{if } c \text{ then } y_f \text{ else } y_g; \\
y_f &= f(x_f); \\
y_g &= g(x_g); \\
x_f &= \text{if } c \text{ then } y_g \text{ else } x; \\
x_g &= \text{if } c \text{ then } x \text{ else } y_f;
\end{align*}
\]

Implements \(\text{if } c \text{ then } f(g(x)) \text{ else } g(f(x))\) with only one instance of \(f\) and \(g\)

Impossible without cycles

Sharad Malik.
Analysis of cyclic combinatorial circuits.
Clock Consistency

Consider the following equations:

\[b = 0 \rightarrow \text{not } \text{pre}(b); \]
\[y = x + (x \text{ when } b) \]

We obtain the following:

\[
\begin{array}{c|cccccccc}
 x & x_0 & x_1 & x_2 & x_3 & x_4 & \ldots \\
 b & 0 & 1 & 0 & 1 & 0 & \ldots \\
 x \text{ when } b & x_1 & x_3 & \ldots \\
 x + (x \text{ when } b) & x_0 + x_1 & x_1 + x_3 & x_2 + x_5 & x_3 + x_7 & x_4 + x_9 & \ldots \\
\end{array}
\]

To compute \(y_i := x_i + x_{2i+1} \), we have to store \(x_i, \ldots, x_{2i+1} \)

Problem: not possible with finite memory
Clock Consistency

- Expressions like $x + (x \ when \ b)$ are not allowed
- Only streams at the same clock can be combined
- What is the ‘same’ clock?
- Undecidable to prove this semantically
- Check syntactically
Clock Consistency

- Two streams have the same clock if their clock can be syntactically unified
- Example:
 \[
 x = a \text{ when } (y > z); \\
 y = b + c; \\
 u = d \text{ when } (b + c > z); \\
 v = e \text{ when } (z < y); \\
 \]

- \(x\) and \(u\) have the same clock
- \(x\) and \(v\) do not have the same clock
Arrays

- Given type α, α^n defines an array with n entries of type α
- Example: $x: \text{bool}^n$
- The bounds of an array must be known at compile time, the compiler simply transforms an array of n values into n different variables.
- The i-th element of an array X is accessed by $X[i]$.
- $X[i..j]$ with $i \leq j$ denotes the array made of elements i to j of X.
- Beside being syntactical sugar, arrays allow to combine variables for better hardware implementation.
Example for Arrays

```plaintext
node DELAY (const d: int; X: bool) returns (Y: bool);
    var A: bool^(d+1);
let
    A[0] = X;
    A[1..d] = (false^(d))-> pre(A[0..d-1]);
    Y = A[d];
tel
```

- `false^(d)` denotes the boolean array of length `d`, which entries are all `false`.
- Observe that `pre` and `->` can take arrays as parameters.
- Since `d` must be known at compile time, this node cannot be compiled in isolation.
- The node outputs each input delayed by `d` steps.
- So `Y_n = X_{n-d}` with `Y_n = false` for `n < d`
Static Recursion

- Functional languages usually make use of recursively defined functions
- **Problem**: termination of recursion in general undecidable
- ~ Primitive recursive functions guarantee termination
- **Problem**: still with primitive recursive functions, the reaction time depends heavily on the input data
- ~ **Static recursion**: recursion only at compile time
- **Observe**: If the recursion is not bounded, the compilation will not stop.
Example for Static Recursion

- Disjunction of boolean array

```plaintext
node BigOr(const n:int; x: bool^n) returns (y:bool)
let
  y = with n=1 then x[0]
    else x[0] or BigOr(n-1,x[1..n-1]);
end
```

- Constant n must be known at compile time
- Node is unrolled before further compilation
Example for Maximum Computation

Static recursion allows logarithmic circuits:

```
node Max(const n:int; x:int^n) returns (y:int)
  var y_1,y_2: int;
  let
    y_1 = with n=1 then x[0]
    else Max(n div 2,x[0..(n div 2)-1]);
    y_2 = with n=1 then x[0]
    else Max((n+1) div 2, x[(n div 2)..n-1]);
  y = if y_1 >= y_2 then y_1 else y_2;
  tel
```
Delay node with recursion

```
node REC_DELAY (const d: int; X: bool) returns (Y: bool);
let
    Y = with d=0 then X
    else false -> pre(REC_DELAY(d-1, X));
tel
```

A call REC_DELAY(3, X) is compiled into something like:

```
Y = false -> pre(Y2)
Y2 = false -> pre(Y1)
Y1 = false -> pre(Y0)
Y0 = X;
```
Lustre is a synchronous dataflow language.
The core Lustre language are boolean equations and clock operators pre, ->, when, and current.
Additional datatypes for real and integer numbers are also implemented.
User types can be defined as in Esterel.
Lustre only allows acyclic programs.
Clock consistency is checked syntactically.
Lustre offers arrays and recursion, but both array-size and number of recursive calls must be known at compile time.
To Go Further
