Outline

- Part 3: Models of Computation
 - FSMs
 - Discrete Event Systems
 - CFSMs
 - Data Flow Models
 - Petri Nets
 - The Tagged Signal Model

Data-flow networks

- A bit of history
- Syntax and semantics
 - actors, tokens and firings
- Scheduling of Static Data-flow
 - static scheduling
 - code generation
 - buffer sizing
- Other Data-flow models
 - Boolean Data-flow
 - Dynamic Data-flow
Data-flow networks

- Powerful formalism for data-dominated system specification
- Partially-ordered model (no over-specification)
- Deterministic execution independent of scheduling
- Used for
 - simulation
 - scheduling
 - memory allocation
 - code generation
 - for Digital Signal Processors (HW and SW)

A bit of history

- Karp computation graphs (‘66): seminal work
- Kahn process networks (‘58): formal model
- Dennis Data-flow networks (‘75): programming language for MIT DF machine
- Several recent implementations
 - graphical:
 - Ptolemy (UCB), Khoros (U. New Mexico), Grape (U. Leuven)
 - SPW (Cadence), COSSAP (Synopsys)
 - textual:
 - Silage (UCB, Mentor)
 - Lucid, Haskell
Data-flow network

- A Data-flow network is a collection of **functional nodes** which are connected and communicate over **unbounded FIFO queues**
- Nodes are commonly called **actors**
- The bits of information that are communicated over the queues are commonly called **tokens**

Intuitive semantics

- (Often stateless) actors perform computation
- Unbounded FIFOs perform communication via sequences of tokens carrying values
 - integer, float, fixed point
 - matrix of integer, float, fixed point
 - image of pixels
- State implemented as self-loop
- Determinacy:
 - unique output sequences given unique input sequences
 - Sufficient condition: blocking read
 - (process cannot test input queues for emptiness)
Intuitive semantics

• At each time, one actor is fired
• When firing, actors consume input tokens and produce output tokens
• Actors can be fired only if there are enough tokens in the input queues

Example: FIR filter
– single input sequence i(n)
– single output sequence o(n)
– o(n) = c1 i(n) + c2 i(n-1)
Intuitive semantics

• Example: FIR filter
 – single input sequence $i(n)$
 – single output sequence $o(n)$
 – $o(n) = c_1 i(n) + c_2 i(n-1)$
Intuitive semantics

• Example: FIR filter
 – single input sequence \(i(n) \)
 – single output sequence \(o(n) \)
 – \(o(n) = c_1 i(n) + c_2 i(n-1) \)
Intuitive semantics

• Example: FIR filter
 – single input sequence $i(n)$
 – single output sequence $o(n)$
 – $o(n) = c_1 i(n) + c_2 i(n-1)$
Intuitive semantics

- Example: FIR filter
 - single input sequence i(n)
 - single output sequence o(n)
 - o(n) = c1 i(n) + c2 i(n-1)
Intuitive semantics

• Example: FIR filter
 – single input sequence i(n)
 – single output sequence o(n)
 – o(n) = c1 i(n) + c2 i(n-1)

Questions

• Does the order in which actors are fired affect the final result?
• Does it affect the “operation” of the network in any way?
• Go to Radio Shack and ask for an unbounded queue!!
Formal semantics: sequences

- Actors operate from a sequence of input tokens to a sequence of output tokens.
- Let tokens be noted by $x_1, x_2, x_3, \text{ etc} \ldots$
- A sequence of tokens is defined as
 \[X = [x_1, x_2, x_3, \ldots] \]
- Over the execution of the network, each queue will grow a particular sequence of tokens.
- In general, we consider the actors mathematically as functions from sequences to sequences (not from tokens to tokens).

Ordering of sequences

- Let X_1 and X_2 be two sequences of tokens.
- We say that X_1 is less than X_2 if and only if (by definition) X_1 is an initial segment of X_2.
- Homework: prove that the relation so defined is a partial order (reflexive, antisymmetric and transitive).
- This is also called the prefix order.
- Example: $[x_1, x_2] \leq [x_1, x_2, x_3]$
- Example: $[x_1, x_2]$ and $[x_1, x_3, x_4]$ are incomparable.
Chains of sequences

• Consider the set S of all finite and infinite sequences of tokens

• This set is partially ordered by the prefix order

• A subset C of S is called a chain iff all pairs of elements of C are comparable

• If C is a chain, then it must be a linear order inside S (otherwise, why call it chain?)

• Example: $\{ [x_1], [x_1, x_2], [x_1, x_2, x_3], \ldots \}$ is a chain

• Example: $\{ [x_1], [x_1, x_2], [x_1, x_3], \ldots \}$ is not a chain

(Least) Upper Bound

• Given a subset Y of S, an upper bound of Y is an element z of S such that z is larger than all elements of Y

• Consider now the set Z (subset of S) of all the upper bounds of Y

• If Z has a least element u, then u is called the least upper bound (lub) of Y

• The least upper bound, if it exists, is unique

• Note: u might not be in Y (if it is, then it is the largest value of Y)
Complete Partial Order

• Every chain in S has a least upper bound

• Because of this property, S is called a Complete Partial Order

• Notation: if C is a chain, we indicate the least upper bound of C by $\text{lub}(C)$

• Note: the least upper bound may be thought of as the limit of the chain

Processes

• Process: function from a p-tuple of sequences to a q-tuple of sequences

 $$F : S^p \rightarrow S^q$$

• Tuples have the induced point-wise order:

 $$Y = (y_1, \ldots, y_p), \ Y' = (y'_1, \ldots, y'_p) \in S^p : Y \leq Y' \iff y_i \leq y'_i$$

 for all $1 \leq i \leq p$

• Given a chain C in S^p, $F(C)$ may or may not be a chain in S^q

• We are interested in conditions that make that true
Continuity and Monotonicity

- Continuity: F is continuous iff (by definition) for all chains C, $\text{lub}(F(C))$ exists and

 $$F(\text{lub}(C)) = \text{lub}(F(C))$$

- Similar to continuity in analysis using limits

- Monotonicity: F is monotonic iff (by definition) for all pairs X, X'

 $$X \leq X' \Rightarrow F(X) \leq F(X')$$

- Continuity implies monotonicity

 - Intuitively, outputs cannot be “withdrawn” once they have been produced
 - Timeless causality. F transforms chains into chains

Least Fixed Point semantics

- Let X be the set of all sequences

- A network is a mapping F from the sequences to the sequences

 $$X = F(X, I)$$

- The behavior of the network is defined as the unique least fixed point of the equation

- If F is continuous then the least fixed point exists $\text{LFP} = \text{LUB}(\{ F^n(\bot, I) : n \geq 0 \})$
From Kahn networks to Data Flow networks

• Each process becomes an actor: set of pairs of
 – firing rule
 (number of required tokens on inputs)
 – function
 (including number of consumed and produced tokens)

• Formally shown to be equivalent, but actors with firing are more intuitive

• Mutually exclusive firing rules imply monotonicity

• Generally simplified to blocking read

Examples of Data Flow actors

• SDF: Synchronous (or, better, Static) Data Flow
 – fixed input and output tokens

 1 + 1

• BDF: Boolean Data Flow
 – control token determines consumed and produced tokens

<table>
<thead>
<tr>
<th>T</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1024</td>
<td>1024</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
</tr>
</tbody>
</table>

merge
select

FFT
TF
Static scheduling of DF

- Key property of DF networks: output sequences do not depend on *time of firing* of actors
- SDF networks can be *statically scheduled* at compile-time
 - execute an actor when it is *known* to be fireable
 - no overhead due to sequencing of concurrency
 - static buffer sizing
- Different schedules yield different
 - code size
 - buffer size
 - pipeline utilization

Static scheduling of SDF

- Based only on *process graph* (ignores functionality)
- Network state: number of tokens in FIFOs
- Objective: find schedule that is *valid*, i.e.:
 - *admissible* (only fires actors when fireable)
 - *periodic* (brings network back to initial state firing each actor at least once)
- Optimize cost function over admissible schedules
Balance equations

- Number of produced tokens must equal number of consumed tokens on every edge

- Repetitions (or firing) vector v_S of schedule S: number of firings of each actor in S

 $v_S(A) \cdot n_p = v_S(B) \cdot n_c$

 must be satisfied for each edge

- Balance for each edge:
 - $-3 \cdot v_S(A) - v_S(B) = 0$
 - $v_S(B) - v_S(C) = 0$
 - $-2 \cdot v_S(A) - v_S(C) = 0$
 - $-2 \cdot v_S(A) - v_S(C) = 0$
Balance equations

\[
\begin{bmatrix}
3 & -1 & 0 \\
0 & 1 & -1 \\
2 & 0 & -1 \\
2 & 0 & -1
\end{bmatrix}
\]

• \(M v_S = 0 \)
 if \(S \) is periodic

• Full rank (as in this case)
 – no non-zero solution
 – no periodic schedule
 (too many tokens accumulate on A->B or B->C)

Balance equations

\[
\begin{bmatrix}
2 & -1 & 0 \\
0 & 1 & -1 \\
2 & 0 & -1 \\
2 & 0 & -1
\end{bmatrix}
\]

• Non-full rank
 – infinite solutions exist (linear space of dimension 1)

• Any multiple of \(q = [1, 2, 2]^T \) satisfies the balance equations

• ABCBC and ABBCC are minimal valid schedules

• ABABBCC is non-minimal valid schedule
Static SDF scheduling

• Main SDF scheduling theorem (Lee ‘86):
 – A connected SDF graph with \(n \) actors has a periodic schedule iff its topology matrix \(M \) has rank \(n-1 \)
 – If \(M \) has rank \(n-1 \) then there exists a unique smallest integer solution \(q \) to
 \[
 M q = 0
 \]
• Rank must be at least \(n-1 \) because we need at least \(n-1 \) edges (connected-ness), providing each a linearly independent row
• Admissibility is not guaranteed, and depends on initial tokens on cycles

Admissibility of schedules

• No admissible schedule:
 BACBA, then deadlock…

• Adding one token (delay) on A->C makes
 BACBACBA valid

• Making a periodic schedule admissible is always possible, but changes specification…
Admissibility of schedules

- Adding initial token changes FIR order

From repetition vector to schedule

- Repeatedly schedule fireable actors up to number of times in repetition vector

\[q = |1 \ 2 \ 2|^{T} \]

- Can find either ABCBC or ABBCC
- If deadlock before original state, no valid schedule exists (Lee ’86)
From schedule to implementation

• Static scheduling used for:
 – behavioral simulation of DF (extremely efficient)
 – code generation for DSP
 – HW synthesis (Cathedral by IMEC, Lager by UCB, …)

• Issues in code generation
 – execution speed (pipelining, vectorization)
 – code size minimization
 – data memory size minimization (allocation to FIFOs)
 – processor or functional unit allocation

Compilation optimization

• Assumption: *code stitching*
 (chaining custom code for each actor)

• More efficient than C compiler for DSP

• Comparable to hand-coding in some cases

• Explicit parallelism, no artificial control dependencies

• Main problem: memory and processor/FU allocation depends on scheduling, and vice-versa
Code size minimization

- Assumptions (based on DSP architecture):
 - subroutine calls expensive
 - fixed iteration loops are cheap
 (“zero-overhead loops”)
- Absolute optimum: *single appearance schedule*
 e.g. ABCBC -> A (2BC), ABBCC -> A (2B) (2C)
 - may or may not exist for an SDF graph…
 - buffer minimization relative to single appearance schedules
 (Bhattacharyya ’94, Lauwereins ’96, Murthy ’97)

Buffer size minimization

- Assumption: no buffer sharing

- Example:

\[q = |100 \ 100 \ 10 \ 1|^{T} \]

- Valid SAS: (100 A) (100 B) (10 C) D
 - requires 210 units of buffer area
- Better (factored) SAS: (10 (10 A) (10 B) C) D
 - requires 30 units of buffer areas, but…
 - requires 21 loop initiations per period (instead of 3)
Dynamic scheduling of DF

- SDF is limited in modeling power
 - no run-time choice
 - cannot implement Gaussian elimination with pivoting
- More general DF is too powerful
 - non-Static DF is Turing-complete (Buck ‘93)
 - bounded-memory scheduling is not always possible
- BDF: semi-static scheduling of special “patterns”
 - if-then-else
 - repeat-until, do-while
- General case: thread-based dynamic scheduling
 - (Parks ‘96: may not terminate, but never fails if feasible)

Example of Boolean DF

- Compute absolute value of average of n samples

![Diagram of Boolean DF example](image)
Example of general DF

- Merge streams of multiples of 2 and 3 in order (removing duplicates)

```
a = get (A)
b = get (B)
forever {
    if (a > b) {
        put (O, a)
        a = get (A)
    } else if (a < b) {
        put (O, b)
        b = get (B)
    } else {
        put (O, a)
        a = get (A)
b = get (B)
    }
}
```

- Deterministic merge (no “peeking”)

Summary of DF networks

- **Advantages:**
 - Easy to use (graphical languages)
 - Powerful algorithms for
 - verification (fast behavioral simulation)
 - synthesis (scheduling and allocation)
 - Explicit concurrency

- **Disadvantages:**
 - Efficient synthesis only for restricted models
 - (no input or output choice)
 - Cannot describe reactive control (blocking read)
Outline

- Part 3: Models of Computation
 - FSMs
 - Discrete Event Systems
 - CFSMs
 - Data Flow Models
 - Petri Nets
 - The Tagged Signal Model