Outline

• Part 3: Models of Computation
 - FSMs
 - Discrete Event Systems
 - CFSMs
 - Data Flow Models
 - Petri Nets
 - The Tagged Signal Model
Data-flow networks

• A bit of history
• Syntax and semantics
 – actors, tokens and firings
• Scheduling of Static Data-flow
 – static scheduling
 – code generation
 – buffer sizing
• Other Data-flow models
 – Boolean Data-flow
 – Dynamic Data-flow
Data-flow networks

- Powerful formalism for data-dominated system specification
- Partially-ordered model (no over-specification)
- Deterministic execution independent of scheduling
- Used for
 - simulation
 - scheduling
 - memory allocation
 - code generation

for Digital Signal Processors (HW and SW)
A bit of history

- Karp computation graphs (‘66): seminal work
- Kahn process networks (‘58): formal model
- Dennis Data-flow networks (‘75): programming language for MIT DF machine
- Several recent implementations
 - graphical:
 - Ptolemy (UCB), Khoros (U. New Mexico), Grape (U. Leuven)
 - SPW (Cadence), COSSAP (Synopsys)
 - textual:
 - Silage (UCB, Mentor)
 - Lucid, Haskell
Data-flow network

- A Data-flow network is a collection of **functional nodes** which are connected and communicate over **unbounded** **FIFO queues**
- Nodes are commonly called **actors**
- The bits of information that are communicated over the queues are commonly called **tokens**
Intuitive semantics

• (Often stateless) actors perform computation
• Unbounded FIFOs perform communication via sequences of tokens carrying values
 – integer, float, fixed point
 – matrix of integer, float, fixed point
 – image of pixels
• State implemented as self-loop
• Determinacy:
 – unique output sequences given unique input sequences
 – Sufficient condition: blocking read
 – (process cannot test input queues for emptiness)
Intuitive semantics

- At each time, one actor is **fired**
- When firing, actors **consume** input tokens and **produce** output tokens
- Actors can be fired only if there are enough tokens in the input queues
Intuitive semantics

- Example: FIR filter
 - single input sequence \(i(n) \)
 - single output sequence \(o(n) \)
 - \(o(n) = c1 \cdot i(n) + c2 \cdot i(n-1) \)
Intuitive semantics

- Example: FIR filter
 - single input sequence \(i(n) \)
 - single output sequence \(o(n) \)
 - \(o(n) = c_1 i(n) + c_2 i(n-1) \)
Intuitive semantics

- Example: FIR filter
 - single input sequence $i(n)$
 - single output sequence $o(n)$
 - $o(n) = c_1 i(n) + c_2 i(n-1)$
Intuitive semantics

- Example: FIR filter
 - single input sequence i(n)
 - single output sequence o(n)
 - o(n) = c1 i(n) + c2 i(n-1)
Intuitive semantics

- Example: FIR filter
 - single input sequence \(i(n) \)
 - single output sequence \(o(n) \)
 - \(o(n) = c_1 \ i(n) + c_2 \ i(n-1) \)
Intuitive semantics

- Example: FIR filter
 - single input sequence i(n)
 - single output sequence o(n)
 - o(n) = c1 i(n) + c2 i(n-1)
Intuitive semantics

• Example: FIR filter
 – single input sequence $i(n)$
 – single output sequence $o(n)$
 – $o(n) = c_1 i(n) + c_2 i(n-1)$
Intuitive semantics

- Example: FIR filter
 - single input sequence $i(n)$
 - single output sequence $o(n)$
 - $o(n) = c_1 i(n) + c_2 i(n-1)$
Intuitive semantics

• Example: FIR filter
 – single input sequence $i(n)$
 – single output sequence $o(n)$
 – $o(n) = c_1 i(n) + c_2 i(n-1)$
Intuitive semantics

• Example: FIR filter
 – single input sequence \(i(n) \)
 – single output sequence \(o(n) \)
 – \(o(n) = c_1 i(n) + c_2 i(n-1) \)
Questions

• Does the order in which actors are fired affect the final result?
• Does it affect the “operation” of the network in any way?
• Go to Radio Shack and ask for an unbounded queue!!
Formal semantics: sequences

- Actors operate from a sequence of input tokens to a sequence of output tokens
- Let tokens be noted by x_1, x_2, x_3, \ldots
- A sequence of tokens is defined as
 \[X = [x_1, x_2, x_3, \ldots] \]
- Over the execution of the network, each queue will grow a particular sequence of tokens
- In general, we consider the actors mathematically as functions from sequences to sequences (not from tokens to tokens)
Ordering of sequences

- Let X_1 and X_2 be two sequences of tokens.
- We say that X_1 is less than X_2 if and only if (by definition) X_1 is an initial segment of X_2.
- Homework: prove that the relation so defined is a partial order (reflexive, antisymmetric and transitive).
- This is also called the prefix order.
- Example: $[x_1, x_2] \leq [x_1, x_2, x_3]$
- Example: $[x_1, x_2]$ and $[x_1, x_3, x_4]$ are incomparable.
Chains of sequences

- Consider the set S of all finite and infinite sequences of tokens
- This set is partially ordered by the prefix order
- A subset C of S is called a chain iff all pairs of elements of C are comparable
- If C is a chain, then it must be a linear order inside S (otherwise, why call it chain?)
- Example: $\{ [x_1], [x_1, x_2], [x_1, x_2, x_3], \ldots \}$ is a chain
- Example: $\{ [x_1], [x_1, x_2], [x_1, x_3], \ldots \}$ is not a chain
(Least) Upper Bound

• Given a subset Y of S, an **upper bound** of Y is an element z of S such that z is **larger** than all elements of Y.

• Consider now the set Z (subset of S) of all the upper bounds of Y.

• If Z has a least element u, then u is called the **least upper bound** (lub) of Y.

• The least upper bound, if it exists, is unique.

• Note: u might not be in Y (if it is, then it is the largest value of Y).
Complete Partial Order

- Every chain in S has a least upper bound
- Because of this property, S is called a Complete Partial Order
- Notation: if C is a chain, we indicate the least upper bound of C by lub(C)
- Note: the least upper bound may be thought of as the limit of the chain
Processes

- Process: function from a p-tuple of sequences to a q-tuple of sequences
 \[F : S^p \rightarrow S^q \]
- Tuples have the induced point-wise order:
 \[Y = (y_1, \ldots, y_p), \quad Y' = (y'_1, \ldots, y'_p) \in S^p : Y \leq Y' \text{ iff } y_i \leq y'_i \text{ for all } 1 \leq i \leq p \]
- Given a chain C in \(S^p \), \(F(C) \) may or may not be a chain in \(S^q \)
- We are interested in conditions that make that true
Continuity and Monotonicity

• Continuity: F is continuous iff (by definition) for all chains C, \(\text{lub}(F(C)) \) exists and

\[
F(\text{lub}(C)) = \text{lub}(F(C))
\]

• Similar to continuity in analysis using limits

• Monotonicity: F is monotonic iff (by definition) for all pairs X, X’

\[
X \leq X' \Rightarrow F(X) \leq F(X')
\]

• Continuity implies monotonicity
 – intuitively, outputs cannot be “withdrawn” once they have been produced
 – timeless causality. F transforms chains into chains
Least Fixed Point semantics

• Let X be the set of all sequences

• A network is a mapping F from the sequences to the sequences

\[X = F(X, I) \]

• The behavior of the network is defined as the unique least fixed point of the equation

• If F is continuous then the least fixed point exists $LFP = \text{LUB}(\{ F^n(\bot, I) : n \geq 0 \})$
From Kahn networks to Data Flow networks

• Each process becomes an *actor*: set of pairs of
 – firing rule
 (number of required tokens on inputs)
 – function
 (including number of consumed and produced tokens)
• Formally shown to be equivalent, but actors with firing are more intuitive
• *Mutually exclusive* firing rules imply monotonicity
• Generally simplified to *blocking read*
Examples of Data Flow actors

- **SDF**: Synchronous (or, better, Static) Data Flow
 - fixed input and output tokens

- **BDF**: Boolean Data Flow
 - control token determines consumed and produced tokens
Static scheduling of DF

- Key property of DF networks: output sequences do not depend on time of firing of actors
- SDF networks can be statically scheduled at compile-time
 - execute an actor when it is known to be fireable
 - no overhead due to sequencing of concurrency
 - static buffer sizing
- Different schedules yield different
 - code size
 - buffer size
 - pipeline utilization
Static scheduling of SDF

- Based only on *process graph* (ignores functionality)
- Network state: number of tokens in FIFOs
- Objective: find schedule that is *valid*, i.e.:
 - *admissible*
 (only fires actors when fireable)
 - *periodic*
 (brings network back to initial state firing each actor at least once)
- Optimize cost function over admissible schedules
Balance equations

- Number of produced tokens must equal number of consumed tokens on every edge

\[\mathbf{n}_p \mathbf{A} \xrightarrow{n_p} \mathbf{n}_c \mathbf{B} \]

- Repetitions (or firing) vector \(\mathbf{v}_S \) of schedule \(S \): number of firings of each actor in \(S \)

\[\mathbf{v}_S(A) \ n_p = \mathbf{v}_S(B) \ n_c \]

must be satisfied for each edge
Balance equations

- Balance for each edge:
 - $3v_S(A) - v_S(B) = 0$
 - $v_S(B) - v_S(C) = 0$
 - $2v_S(A) - v_S(C) = 0$
 - $2v_S(A) - v_S(C) = 0$
Balance equations

\[M \nu_S = 0 \]

iff \(S \) is periodic

- Full rank (as in this case)
 - no non-zero solution
 - no periodic schedule

(too many tokens accumulate on A->B or B->C)
Balance equations

- Non-full rank
 - infinite solutions exist (linear space of dimension 1)
- Any multiple of $q = |1 \ 2 \ 2|^T$ satisfies the balance equations
- ABCBC and ABBCC are minimal valid schedules
- ABABBCBCCCC is non-minimal valid schedule
Static SDF scheduling

- Main SDF scheduling theorem (Lee ‘86):
 - A connected SDF graph with \(n \) actors has a periodic schedule iff its topology matrix \(M \) has rank \(n-1 \)
 - If \(M \) has rank \(n-1 \) then there exists a unique smallest integer solution \(q \) to
 \[
 M \cdot q = 0
 \]
- Rank must be at least \(n-1 \) because we need at least \(n-1 \) edges (connected-ness), providing each a linearly independent row
- Admissibility is not guaranteed, and depends on initial tokens on cycles
Admissibility of schedules

- No admissible schedule:
 BACBA, then deadlock...
- Adding one token (delay) on A->C makes
 BACBACBA valid
- Making a periodic schedule admissible is always possible, but changes specification...
Admissibility of schedules

- Adding initial token changes FIR order
From repetition vector to schedule

- Repeatedly schedule fireable actors up to number of times in repetition vector
 \[q = \begin{bmatrix} 1 & 2 & 2 \end{bmatrix}^T \]

- Can find either ABCBC or ABBCC

- If deadlock before original state, no valid schedule exists (Lee ‘86)
From schedule to implementation

• Static scheduling used for:
 – behavioral simulation of DF (extremely efficient)
 – code generation for DSP
 – HW synthesis (Cathedral by IMEC, Lager by UCB, …)

• Issues in code generation
 – execution speed (pipelining, vectorization)
 – code size minimization
 – data memory size minimization (allocation to FIFOs)
 – processor or functional unit allocation
Compilation optimization

- Assumption: code stitching
 (chaining custom code for each actor)
- More efficient than C compiler for DSP
- Comparable to hand-coding in some cases
- Explicit parallelism, no artificial control dependencies
- Main problem: memory and processor/FU allocation depends on scheduling, and vice-versa
Code size minimization

- Assumptions (based on DSP architecture):
 - subroutine calls expensive
 - fixed iteration loops are cheap
 ("zero-overhead loops")
- Absolute optimum: single appearance schedule
 e.g. ABCBC -> A (2BC), ABBCC -> A (2B) (2C)
 - may or may not exist for an SDF graph…
 - buffer minimization relative to single appearance schedules
 (Bhattacharyya ‘94, Lauwereins ‘96, Murthy ‘97)
Buffer size minimization

- Assumption: no buffer sharing
- Example:

\[
q = |100 \ 100 \ 10 \ 1|^{T}
\]

- Valid SAS: (100 A) (100 B) (10 C) D
 - requires 210 units of buffer area
- Better (factored) SAS: (10 (10 A) (10 B) C) D
 - requires 30 units of buffer areas, but...
 - requires 21 loop initiations per period (instead of 3)
Dynamic scheduling of DF

- SDF is limited in modeling power
 - no run-time choice
 - cannot implement Gaussian elimination with pivoting
- More general DF is too powerful
 - non-Static DF is Turing-complete (Buck ‘93)
 - bounded-memory scheduling is not always possible
- BDF: semi-static scheduling of special “patterns”
 - if-then-else
 - repeat-until, do-while
- General case: thread-based dynamic scheduling
 - (Parks ‘96: may not terminate, but never fails if feasible)
Example of Boolean DF

- Compute absolute value of average of \(n \) samples
Example of general DF

- Merge streams of multiples of 2 and 3 in order (removing duplicates)

\[a = \text{get}(A) \]
\[b = \text{get}(B) \]
\[\text{forever} \{ \]
\[\quad \text{if} (a > b) \{ \]
\[\quad \quad \text{put}(O, a) \]
\[\quad \quad a = \text{get}(A) \]
\[\quad \} \] else if (a < b) { \]
\[\quad \quad \text{put}(O, b) \]
\[\quad \quad b = \text{get}(B) \]
\[\} \] else { \]
\[\quad \quad \text{put}(O, a) \]
\[\quad \quad a = \text{get}(A) \]
\[\quad \]}

Deterministic merge
(no “peeking”)

EE249Fall07
Summary of DF networks

• Advantages:
 – Easy to use (graphical languages)
 – Powerful algorithms for
 – verification (fast behavioral simulation)
 – synthesis (scheduling and allocation)
 – Explicit concurrency

• Disadvantages:
 – Efficient synthesis only for restricted models
 – (no input or output choice)
 – Cannot describe reactive control (blocking read)
Outline

- Part 3: Models of Computation
 - FSMs
 - Discrete Event Systems
 - CFMSs
 - Data Flow Models
 - Petri Nets
 - The Tagged Signal Model