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Chapter 6
Aberrations

As we have seen, spherical lenses only obey Gaussian lens law in the paraxial approximation.
Deviations from thisideal are called aberrations.

Rays toward the edge of the pupil (even paralel to the axis) violate the paraxial condition on the
incidence angle at the first surface. They focus closer (for a biconvex lens) than F;. No truly

sharp focus occurs. The least blurred spot (smallest disc) iscalled circle of least confusion, or best
focus. Thisform of symmetric aberration is spherical aberration.

There are many forms of aberration.
Coma: Variation of magnification with aperture.

Rays passing through edge portions of the pupil are imaged at a different height than those pass-
ing through the center.

/@//_
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Map of Raysin Pupil

tangential rays

Adtigmatism I
Algmalism tangential image

sagital image

sagital rays
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In astigmatism the tangential and sagittal images do not coincide. There are 2 line images with
acircle of least confusion in the middle.

Field Curvature

e \
T U

Obj ect plane Lens

Image pointslie on a curved
surface, not a plane

Positive lenses give inward curvature
negative lenses give backward curvature.

Distortion: Field dependent magnification

Barrel distortion Pincushion distortion

Wave Front Aberration
In awave-optics picture, the thin lensis represented by phase delay.

f(x,y) = —k"z—;f = —kD(x, y) (6.2)

Which gives Gaussian imaging. Aberrations modify f . A spherical lens only givesthisf inthe
paraxia approximation.

We collect these phase errors at the exit pupil and use them to define a generalized pupil function:

(6.2)

W(x,y) : path length error
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ideal wave front
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Expressed in this way, the primary aberrations are written as follows, with r : normalized radial

coordinate in the pupil, and h': the i mage height

Spherical aberration:

Coma:

Astigmatism:

Field Curvature:  Ayr *he?

Distortion: A[hd?r cosq

Monochromatic Aberrations: All of the preceding discussion refers to aberrations that do not
depend on wavelength.

Chromatic Aberrations. Dependance of wavefront on wavelength.

Consider the ssmple thin lens equation:

(6.3)

Theindex n isgenerally | dependent, n(l ), so f is| dependent.

Violet red
image Image

Change in image distance: longitudinal chromatic aberration
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Change in magnification: lateral color. Lateral color is usually more noticeable

Achromat: lens designed to cancel chromatic aberration.

Lens Design:

* The genera problem of lens design involves cancelling aberrations

» Aberration depends on the lensindex, as well as the surface radii.

» Complex lens systems can minimize aberrations

Simple singlet case For a given desired focal length, there is freedom to choose one of the radii
for asinglet. The spherical aberration and coma depend on the particular choice, so these aberra-
tions can be minimized by the design form. Thisisillustrated in the following diagram:

design: 100mmfoca length 117o field.

Spherical
%/ aberration = coma

) DOQ(

—2R; = 50 R, =¥ R; z50R; =25 Ry =167

Optimum form (nearly plano-convex)

Fourier-space treatment of aberrations

Recall that the ideal effect of the lensisto impart a quadratic phase shift, multiplied by the aper-
ture function. The amplitude impulse response: h(u,v) is a scaled Fourier transform of the pupil
function. Thiscan be generalized to the Fourier transform of 7AXx.y).

¥

h(u,v) = %OOW(X y)exp[—j—g(ux+vy)]dxdy (6.4)
Zy4 —¥
= <= P 0e VexplikW(x, y)] e 2 (uxcr vy) [axy (65)
| “z,z, Zi

o™l

The amplitude transfer function is still the Fourier transform of h, so
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H(f, f,) = Al zf,, -l 2f,)

P(I 7t | 7 ) exp[jkW(- zf,, I zf)] (6.6)

X! X?

Aberrations introduce a pure phase distortion within
an unaffected passband:  P(l zf,, | zf,)

The effects with coherent illumination are described by H. For incoherent illumination - we must
consider the optical transfer function:  7(f,, fy) . Recall that the optical transfer function for a

diffraction limited case is the normalized overlap area of displaced pupils.

Define A(f,, fy) asthe overlap area of

and (6.7)

o
G

Then for adiffraction limited system, the optical transfer function is

0 O o
I(f, ) = Ll (6.8)
00 dxdy
A(0, 0)
With aberrations, the optical transfer function becomes:
< . i lzf, 1 zfs lzf, 1z g0
00 expilk[""?” —A Y5 WE - H Y- z]ngdy
e fy) = AL — (69)
00 dxdy
A(0,0)
The aberrations can only decrease the modulation transfer function. It is easy to show that:
2 2
|j{(fX’ fy)| aberrations £ |\7{(fX’ fy)ldiffrr;x:tion limited (6'10)
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These aberrations do not reduce the absolute cutoff frequency, but they do reduce the contrast at
some frequencies.

For a diffraction limited system, the optical transfer function is positive definite. With aberra-
tions, the optical transfer function can be negative in certain frequency bands, resulting in a con-
trast reversal.

Calculation of the optical transfer function generally requires numerical calculation. An analyti-
cal solution is possible for asimple focal error. We need to assume a square aperture.

The diffraction limited OTF for a square aperture with aside 2w is:

I(f 1)) = Laefnggf pet o ﬂ; . cutoff of coherent system

. L(x)"
ST &
\ 1

With afocal error, the phase at the pupil is quadratic, but with aradiusof z,* z,. It does not con-
verge exactly to the image plane.

ideal phase f (x,y) = £ (& +y?)
i

actual phase f ,(x, y) = %(xzﬂ/z)
a

(6.12)
so
ael 12,2
At the edge of the aperturealongthex ory axis
lagl _ 16,2
W(w, 0)° W, = Zez ZfaW (6.13)
(6.14)
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W, isthe measure of the magnitude of error.

The analytical solution for the OTF is then:
fo.o f . r8W.f = T T8Wimedy & If |
- | &x0 &yo mae'x 09 _ I'xI0 meely 6gg _ | ylo .
O f) = LB B nc[ Ry Zfog]snc[ ] ] (6.15)
Parametrized in W, «l , the number of waves of the path length difference: _

H
14

Higher order aberrations

Most common systems are rotationally symmetric with acircular pupil. We can use polar
coordinates for pupil points: W(x,y) = W(rcosq, rsing). The aberration function W depends
on the object height, h (or image height h' ) and the pupil coordinates (r, q) .

If we use a normalized radius, and suppress the explicit dependence on image height h',

W(r,q) = Afr 4 A1 *cosq + Ar ?cos’q + Ayr ?+ Ar cosq (6.16)
Ay : defocus A, :tilt

The field curvature and distortion are equivalent to the field dependent focus and tilt errors,
respectively.

A commonly used figure of merit: the Strehl ratio

aberration free
aberrated

—

<o In(0,0)  aberrated -
lh(0, 0)| aberration-free

Definer =rew ; F(r,q) = 2|£W(r,q)
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12p 2
1. .
S= S00exPliF (r, g)]rdrdg (6.17)
Ploo
For small aberrations, expand exp(jF ) @1 +jF _%FZ
Then
1 L2p 1-2 2
— L2~ 4 . 0
S= 5100 2F +]Fgrdrdq (6.18)
Ploo
1 12p 2 1 12p 2
— N\ 2 N\
= [1_§BOOF rdr dq} +-—2[00Frdr dq] (6.19)
00 00
112p 1 12p 2
N N\ 2 N N\
S@l_BOOF rdrdg+ —-Z{OOFrdrdq} (6.20)
00 00
Define the wavefront variance s \ZN
12p
Sw = %(‘)C)[W(r . G) = W,]°r dr dg (6.21)
00
112p
= S00W(r ) dr da -, (6.22)
00
with
12p
W,, = ZaaW(r, q)r drdg 6.23)
IOo 0
Thus, we can write
(6.24)

The Strehl ratio depends only on sf2 - not on the details of aberration function. This leads usto
the idea of balanced aberrations.

Example: we can balance spherical aberration with defocus
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F(r) = Ag*+Ar° (6.25)

We choose just the right amount of defocus to minimize the wavefront variance:

, (6.26)

whichleadsto Ay = -As.

Balanced aberration: An aberration of acertain order in apower expansion in pupil coordinatesis

. . . L 2
mixed with lower order aberrationsto minimize s; .

Zernike circle polynomials See Handout: Mahajan, Appl. Opt. 33, 8124 (1994). For further
detail: Mahajan, “ Aberration theory made simple” SPIE press,
1991

*Balanced

*Orthonormal over a unit circle

*Complete set
¥ n
f(r,q) = kW(r,q) = § & {e2(n+1)R(r)[C,cosmq+S,  sinmg}  (6.27)
n=0m=0
(6.28)
where n and m are positive integers, withn— 3 0, and always even.
Theradia function:
(n—m) 2 s
an(r ) - é (—1) (n —S)! r n-2s (629)
s20 gf(n+m)e2—-s]![(n—m) R —g]!
Wavefront variance:
. ~ 2
a(r, ft = § & [Com* Sol (6.30)
n m

The Zernike polynomials are typically given an ordering. However, be careful! The ordering is
not universally agreed to. Different texts and even different lens design and optical imaging anal-
ysis software use their own ordering convention.
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¥

W(r,a) = @ az(r,q) (6.31)

i=1
Zevenj = J2(n+ 1)RrT(r)cosmq mt 0 (6.32)
Zoag = Y2+ DRy(r)sinmg ~ m* 0 (6.33)
Z; = Jn+1R7(r) m=0 (6.34)

The table in the handout gives one of the possible orderings{j, n, m}

Point spread functionsfor Zernike’'s  (circular pupils)

Wewritethe aberrated pupil functioninsidetheunit circleas #(r,q) = D porey
f(r,q) = kW(r,q) phaseaberration
Expand f (r, q) in Zernike polynomials
(6.35)

We wish to calculate the aberrated point spread function: [object radial coordinates: (d, Y)]

Take the Fourier transform of P(r, Q) :

12p ) d v
h(d,Y) = g " Va9 Vrgrgq )
00
If the aberrationissmall f «2p, ejf @l +jf +%
e _ 9 9 . M cosmg U
1+jff = gaamRii = : (6.36)
n m T sinmqg Eﬁ
where
a'tm = Jagm nto (6.37)
a'syy, =1+ja,, n=20 (6.38)
L2p i i
h(d, Y) = & & OOR mmRa(r)f €OSMa yel2Praesd=Vrgr g (6.39)
n Mmoo T sinmq
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It can be shown: (see Born and Wolf)

™ 1) 2 62ne1(200)g] G
h(d Y) = § § a',pe ~+(-1) ° gZ_QLzl_E__&, cosmyY & (6.40)
n m p i sinmY

The point spread functions for Zernike aberrations are related to higher order Bessel functions.

Aberrations_post.fm - 46 - Chapter 6



