| Determined by M
alignment precision Violations result in
or fused features Use minimum feat | on
in missing (una
s | nchored), und | er/oversized, | |---|----------------------------|---------------------|------------------| | | Nominal [µm] | Min Feature
[µm] | Min Spacing [µm] | | POLYO, POLY1, POLY2 | 3 | 2 | 2 | | POLY1_POLY2_VIA | 3 | 2 | 2 | | ANCHOR1, ANCHOR2 | 3 | 3 | 2 | | DIMPLE | 3 | 2 | 3 | | METAL | 3 | 3 | 3 | | HOLE1, HOLE2 | 4 | 3 | 3 | | | | | | ## **Reading: Senturia Chpt. 3, Jaeger Chpt. 11, Handouts: "Bulk Micromachining of Silicon" **Lecture Topics: **Bulk Micromachining **Anisotropic Etching of Silicon **Boron-Doped Etch Stop **Electrochemical Etch Stop **Sisotropic Etching of Silicon **Deep Reactive Ion Etching (DRIE) # Mechanical Properties of Silicon **Crystalline silicon is a hard and brittle material that deforms elastically until it reaches its yield strength, at which point it breaks. **Tensile yield strength = 7 GPa (~1500 lb suspended from 1 mm²) **Young's Modulus near that of stainless steel **{100} = 130 GPa; {110} = 169 GPa; {111} = 188 GPa **Mechanical properties uniform, no intrinsic stress **Mechanical integrity up to 500°C **Good thermal conductor **Low thermal expansion coefficient **High piezoresistivity ### Recipe-Based Suppression of "Footing" Use higher process pressure to reduce ion charging [Nozawa] \forall High operating pressure \rightarrow concentration of (-) ions increases and can neutralize (+) surface charge ♦ Issue: must introduce as a separate recipe when the etch reaches the Si-insulator interface, so must be able to very accurately predict the time needed for etching Adjust etch recipe to reduce overetching [Schmidt] ♦ Change C₄F₈ flow rate, pressure, etc., to enhance passivation and reduce overetching ♥ <u>Issue</u>: Difficult to simultaneously control footing in a narrow trench and prevent grass in wide trenches * Use lower frequency plasma to avoid surface charging [Morioka] $\$ Low frequency ightarrow more ions with low directionality and kinetic energy → neutralizes (-) potential barrier at trench entrance ♦ Allows e^{-'}s to reach the trench base and neutralize (+) charge \rightarrow maintain charge balance inside the trench