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MEMS Material Property Test 
Structures
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Stress Measurement Via Wafer Curvature

• Compressively stressed film →
bends a wafer into a convex 
shape

• Tensile stressed film → bends Detector

θ

x
Slope = 1/R

Tensile stressed film → bends 
a wafer into a concave shape

• Can optically measure the 
deflection of the wafer 
before and after the film is 
deposited

• Determine the radius of Si-substrate
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curvature R, then apply:
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σ = film stress [Pa]
E′ = E/(1-ν) = biaxial elastic modulus [Pa]
h = substrate thickness [m]
t = film thickness
R = substrate radius of curvature [m]
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MEMS Stress Test Structure

• Simple Approach: use a clamped-
clamped beam

Compressive stress causes 
buckling
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Arrays with increasing length 
are used to determine the 
critical buckling load, where
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Limitation: Only compressive 
stress is measurable

E = Young’s modulus [Pa]
I = (1/12)Wh3 = moment of inertia
L, W, h indicated in the figure

More Effective Stress Diagnostic

• Single structure measures both 
compressive and tensile stress

• Expansion or contraction of test 
beam → deflection of pointerbeam → deflection of pointer

• Vernier movement indicates 
type and magnitude of stress

Expansion → Compression
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Contraction → Tensile
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Q Measurement Using Resonators
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Output

Input

Output

Support 
Beams

R = 32 μm

Anchor

Resonator Data
R = 32 μm, h = 3 μm
d = 80 nm, Vp = 3 V

Frequency [MHz]

[Y.-W. Lin, Nguyen, JSSC Dec. 04]

Folded-Beam Comb-Drive Resonator

• Issue w/ Wine-Glass Resonator: non-standard fab process
• Solution: use a folded-beam comb-drive resonator

fo=342.5kHz
Q=41,000
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Comb-Drive Resonator in Action

• Below: fully integrated micromechanical resonator oscillator 
using a MEMS-last integration approach
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Folded-Beam Comb-Drive Resonator

• Issue w/ Wine-Glass Resonator: non-standard fab process
• Solution: use a folded-beam comb-drive resonator

fo=342.5kHz
Q=41,000
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Measurement of Young’s Modulus

• Use micromechanical resonators
Resonance frequency depends on E
For a folded-beam resonator: 213)(4
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h = thickness
Equivalent mass

• Extract E from 
measured frequency fo

M  f f  l 
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•Measure fo for several 
resonators with varying 
dimensions

• Use multiple data points 
to remove uncertainty 
in some parameters


