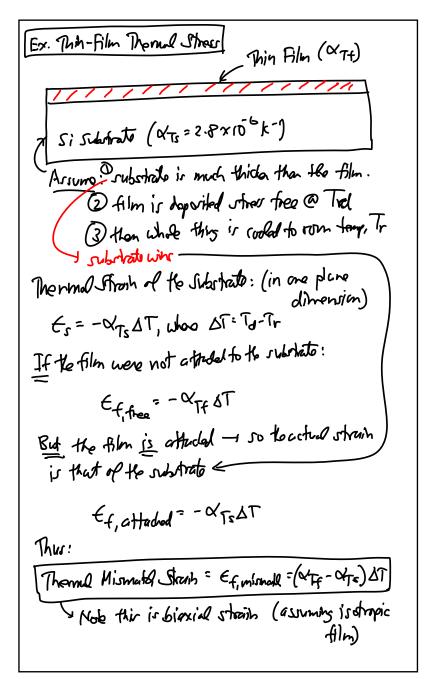
•	Ann	ounc	eme	nts:
---	-----	------	-----	------

· Lecture schedule for the next 4 weeks:

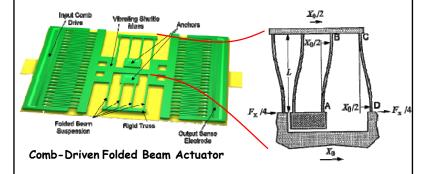
Monday	Tuesday	Wednesday	Thursday	Friday		
Oct. 5	6	7	8	9		
Lecture	Lecture		Discuss			
5-6:30	3:30-5		3:30-5			
241 Cory	Moffitt		Moffitt			
12	13	14	15	16		
Lecture			Discuss			
5-6:30			3:30-5			
241 Cory			Moffitt			
19	20	21	22	23		
Lecture	Lecture		Lecture			
5-6:30	3:30-5		3:30-5			
241 Cory	Moffitt		Moffitt			
26	27	28	29	30		
Discuss			Lecture			
3:30-5			3:30-5			
Moffitt			Moffitt			
Nov. 2	3	4	5	6		
Lecture	Midterm		Lecture			
5-6:30	3:30-5		3:30-5			
241 Cory	Moffitt		Moffitt			

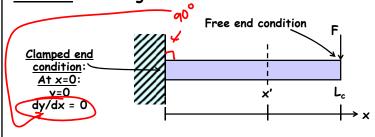

- · Midterm Exam:
 - ⋄ Tu, Nov. 3, during regular lecture
 - \$ 1.5 hours, but might go longer
- · HW#3 due Thursday, 10/15, at 7 p.m.

- · Today:
- · Reading: Senturia, Chpt. 8
- · Lecture Topics:
 - ♦ Stress, strain, etc., for isotropic materials
 - Thin films: thermal stress, residual stress, and stress gradients
 - **4** Internal dissipation
 - MEMS material properties and performance metrics
- ------
- · Reading: Senturia, Chpt. 9
- · Lecture Topics:
 - ♥ Bending of beams
 - ♥ Cantilever beam under small deflections
 - ♥ Combining cantilevers in series and parallel
 - ♥ Folded suspensions
 - Design implications of residual stress and stress gradients

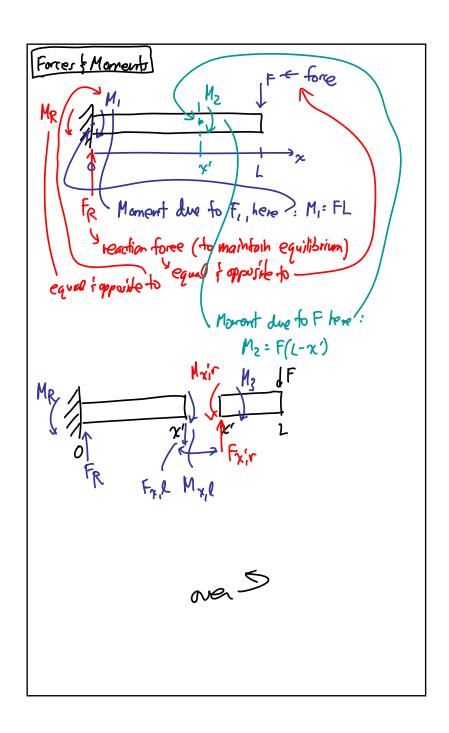
Linear Tromma Expansion

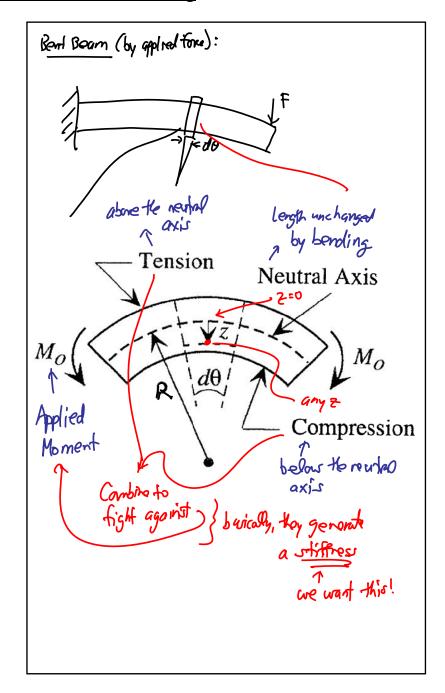
temperature? - solid expand in volume

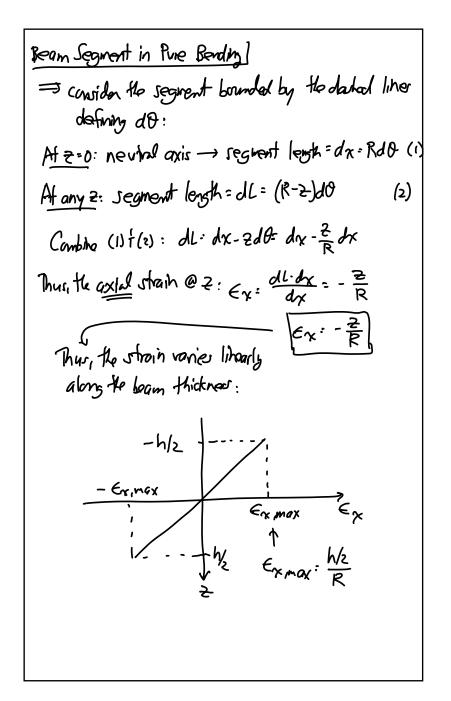

Definition. Linear terms exponsion coefficient


of, mismath =
$$(\frac{E}{1-v}) \in f$$
, mismath
 $Ex.$ Then film is polyimide
 $VTf = 70 \times 10^{-6} \text{ k}^{-1}$, $E' = 4 \text{ GPq}$
deposited @ 250°C, then covered to RT: 25°C
 $\Delta T : 225 \text{ k}$
 Ef , mismath = $(70-2.8) \mu (225) = 1.5 \times 10^{-2}$
 $(\mu : 10^{-6}, m = 10^{-3}, k = 10^{3}, G = 10^{9})$
Of, mismath = $(4G)(1.5 \times 10^{-2}) = 60.5 \text{ MPq}$
 10^{-9} Shess is (1): tensile
 $(-1) \text{ would be compressive}$
 SiO_2

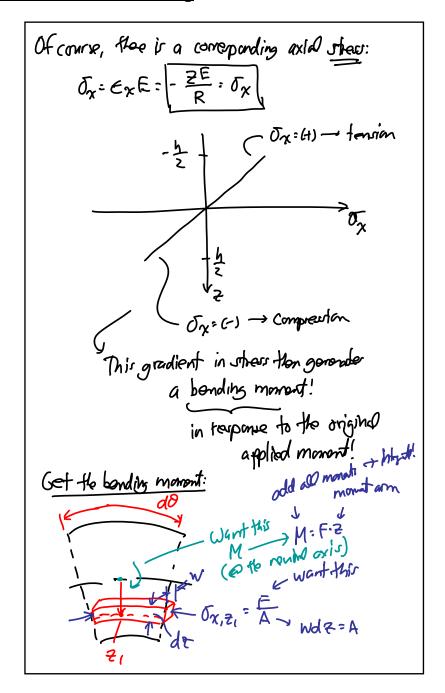
- · Go through Module 7 slides 41-49
- New Topic: Bending of beams
 - ♥ Cantilever beam under small deflections
 - ♥ Combining cantilevers in series and parallel
 - ♥ Folded suspensions
 - Design implications of residual stress and stress gradients

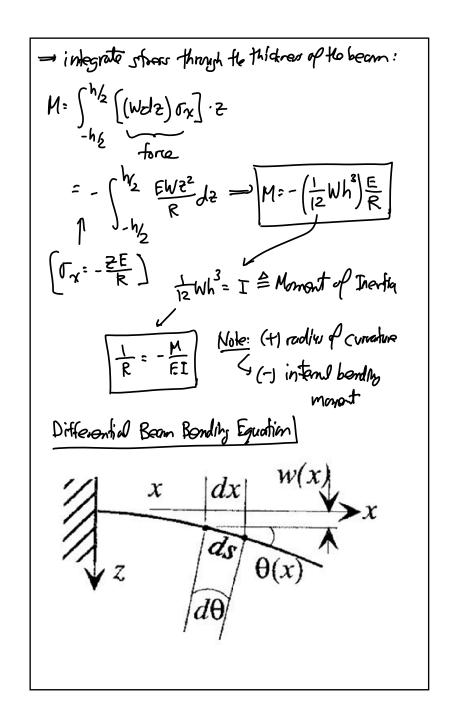

- · Springs and suspensions very common in MEMS
- · Coils are popular in the macro-world; but not easy to make in the micro-world
- Beams: simpler to fabricate and analyze;
 become "stronger" on the micro-scale → use
 beams for MEMS


Problem: Bending a Cantilever Beam



- * Objective: Find relation between tip deflection $y(x=L_c)$ and applied load F
- Assumptions:
 - 1. Tip deflection is small compared with beam length
 - 2. Plane sections (normal to beam's axis) remain plane and normal during bending, i.e., "pure bending"
 - 3. Shear stresses are negligible




EE 245: Introduction to MEMS

CTN 10/13/09

White out some geometric relationships:

Then we small angle approx.

$$cos\theta = \frac{dx}{ds} \rightarrow ds : \frac{dx}{cos\theta} \rightarrow ds \stackrel{?}{=} dx$$

$$tan0 = \frac{dw}{dx} = Slope of beam$$

$$ds : Rd0 \rightarrow R = \frac{d0}{ds}$$
Therefore: (1) into (2)

$$\frac{1}{R} : \frac{d^2w}{dx^2} = -\frac{M}{EL}$$
Small Angle Ream

Bonday