Lecture 16: Beam Combos

•	Ann	ound	em	ents:
---	-----	------	----	-------

· Lecture schedule for the next 4 weeks:

Monday	Tuesday	Wednesday	Thursday	Friday	
Oct. 5	6	7	8	9	
Lecture	Lecture		Discuss		
5-6:30	3:30-5		3:30-5		
241 Cory	Moffitt		Moffitt		
12	13	14	15	16	
Lecture			Discuss		
5-6:30			3:30-5		
241 Cory			Moffitt		
19	20	21	22	23	
Lecture	Lecture		Lecture		
5-6:30	3:30-5		3:30-5		
241 Cory	Moffitt		Moffitt		
26	27	28	29	30	
Discuss			Lecture		
3:30-5			3:30-5		
Moffitt			Moffitt		
Nov. 2	3	4	5	6	
Lecture	Midterm		Lecture		
5-6:30	3:30-5		3:30-5		
241 Cory	Moffitt		Moffitt		

· Midterm Exam:

🖔 Tu, Nov. 3, during regular lecture

\$ 1.5 hours, but might go longer

· Today:

· Reading: Senturia, Chpt. 9

· Lecture Topics:

Bending of beams

♥ Cantilever beam under small deflections

♥ Combining cantilevers in series and parallel

♦ Folded suspensions

Design implications of residual stress and stress gradients

• -----

Problem: Bending a Cantilever Beam

- * Objective: Find relation between tip deflection $y(x=L_c)$ and applied load F
- * Assumptions:
 - 1. Tip deflection is small compared with beam length
 - 2. Plane sections (normal to beam's axis) remain plane and normal during bending, i.e., "pure bending"
 - 3. Shear stresses are negligible

Maximum deflection @ x=1:

$$W_{\text{max}} = \left(\frac{13}{3EI}\right) F \rightarrow F = \left(\frac{3EE}{13}\right) w(x=1)$$

$$w_{\text{max}} = \left(\frac{1}{13}\right) F \rightarrow F = \left(\frac{3EE}{13}\right) w(x=1)$$

$$w_{\text{max}} = \left(\frac{1}{13}\right) w(x=1)$$

EE 245: Introduction to MEMS

Lecture 16: Beam Combos

Lecture 16: Beam Combos

