EE 245: Introduction to MEMS

Lecture 17: Energy Methods

· Announcements:

· Lecture schedule for the next 4 weeks:

Monday	Tuesday	Wednesday	Thursday	Friday
Oct. 5	6	7	8	9
		'		9
Lecture	Lecture		Discuss	
5-6:30	3:30-5		3:30-5	
241 Cory	Moffitt		Moffitt	
12	13	14	15	16
Lecture			Discuss	
5-6:30			3:30-5	
241 Cory			Moffitt	
19	20	21	22	23
Lecture	Lecture		Lecture	
5-6:30	3:30-5		3:30-5	
241 Cory	Moffitt		Moffitt	
26	27	28	29	30
Discuss			Lecture	
3:30-5			3:30-5	
Moffitt			Moffitt	
Nov. 2	3	4	5	6
Lecture	Midterm		Lecture	
5-6:30	3:30-5		3:30-5	
241 Cory	Moffitt		Moffitt	
LTI CON	74(0)) 1111		MOTITI	

· Midterm Exam:

👆 Tu, Nov. 3, during regular lecture

\$ 1.5 hours, but might go longer

· HW#5: Get it off the web later today

· Today:

· Reading: Senturia, Chpt. 9

· Lecture Topics:

Bending of beams

♦ Cantilever beam under small deflections

♥ Combining cantilevers in series and parallel

♥ Folded suspensions

Design implications of residual stress and stress gradients

♦ Energy Methods

Virtual Work

Energy Formulations

- Tapered Beam Example

- Estimating Resonance Frequency

• -----

· Last Time:

* Important case for MEMS suspensions, since the thin films comprising them are often under residual stress

* Consider small deflection case: y(x) « L

Governing differential equation: (Euler Beam Equation)

$$EI_{z} \frac{d^{4}y}{dx^{4}} - S \frac{d^{2}y}{dx^{2}} = F \delta(x - L)$$
Axial Load Unit impulse @ x=L

EE 245: Introduction to MEMS Lecture 17: Energy Methods

EE 245: Introduction to MEMS

Lecture 17: Energy Methods

Clamped-Guided Bean Unda Agial I and

- Important case for MEMS suspensions, since the thin films comprising them are often under residual stress
- * Consider small deflection case: y(x) « L

Governing differential equation: (Euler Beam Equation)

$$EI_z \frac{d^4y}{dx^4} - S \frac{d^2y}{dx^2} = F \delta(x - L)$$
Axial Load Unit impulse @ x=L

- Can solve the ODE using standard methods ♦ Senturia, pp. 232-235: solves ODE for case of point load on a clamped-clamped beam (which defines B.C.'s)
 - For solution to the clamped-quided case: see 5. Timoshenko, Strength of Materials II: Advanced Theory and Problems, McGraw-Hill, New York, 3rd Ed., 1955
- * Result from Timoshenko:

$$S > 0$$
 (tension)
$$k^{-1} = \frac{pL - 2\tanh(pL/2)}{p|S|} = \frac{y(x=L)}{F}$$

$$S < 0 \text{ (compression)}$$

$$k^{-1} = \frac{-pL + 2\tan(pL/2)}{p|S|} = \frac{y(x=L)}{F}$$
 where $p = \sqrt{\frac{|S|}{EI_z}}$

EE 245: Introduction to MEMS

Lecture 17: Energy Methods

EE 245: Introduction to MEMS Lecture 17: Energy Methods

