•	Ann	ALIN	com	ents:
•	Arm	ouri	Cen	ieni 5 ·

· Lecture schedule for the next 4 weeks:

Monday	Tuesday	Wednesday	Thursday	Friday
Oct. 5	6	7	8	9
Lecture	Lecture		Discuss	
5-6:30	3:30-5		3:30-5	
241 Cory	Moffitt		Moffitt	
12	13	14	15	16
Lecture			Discuss	
5-6:30			3:30-5	
241 Cory			Moffitt	
19	20	21	22	23
Lecture	Lecture		Lecture	
5-6:30	3:30-5		3:30-5	
241 Cory	Moffitt		Moffitt	
26	27	28	29	30
Discuss			Lecture	
3:30-5			3:30-5	
Moffitt			Moffitt	
Nov. 2	3	4	5	6
Lecture	Midterm		Lecture	
5-6:30	3:30-5		3:30-5	
241 Cory	Moffitt		Moffitt	

- · Midterm Exam:
 - 🖔 Tu, Nov. 3, during regular lecture
 - ⋄ 1.5 hours, but might go longer

 Reading: Senturia, Chpt. 10: §10.5, Chpt. 19 Lecture Topics: Estimating Resonance Frequency Lumped Mass-Spring Approximation ADXL-50 Resonance Frequency Distributed Mass & Stiffness Folded-Beam Resonator 					
· Last Time:					
kmax = 5 = = = = = = = = = = = = = = = = =					
To get frequency:					
Kmax = Wmax					
W= Wmax [radian/s] [radian/s] [radian/s]					
W= res. freq.					
Wmax = maximum potental energy					
p. dansits of the structual material W: beam width					
hz " thickness					
y (x) = resmance mod shape					

At
$$g: 1: X(L)$$
, $\frac{X_0}{2} = \frac{f_X L^3}{48ET_2} \le B.C.$

Substitute into (1):

$$\frac{2}{9} = \frac{X_0}{2} \left[3 \left(\frac{1}{L} \right)^2 - 2 \left(\frac{n}{L} \right)^3 \right]$$

Which yields in relocably

$$V_0 = \frac{X_0}{4} \left[3 \left(\frac{1}{L} \right)^2 - 2 \left(\frac{n}{L} \right)^3 \right] \omega_0$$

It was into the expression for keep:

$$KE_{[AB]} = \frac{1}{2} \int_{0}^{L} \frac{X_0^2 \omega_0^2}{4} \left[3 \left(\frac{n}{L} \right)^2 - 2 \left(\frac{n}{L} \right)^3 \right]^2 \omega_0 \left(\frac{n}{L} \right)$$

Static Mass of Learn [MB]

$$I(F_{(AB)} = \frac{13}{280} X_0^2 \omega_0^2 M_{CAB}) \left[1 - \frac{3}{2} \left(\frac{n}{L} \right)^2 + \left(\frac{n}{L} \right)^3 \right] \omega_0$$

Thus:

$$V_0 \omega_0^2 M_{CAB} \int_{0}^{L} \left[1 - \frac{3}{2} \left(\frac{n}{L} \right)^2 + \left(\frac{n}{L} \right)^3 \right] \omega_0$$

$$KE_{(CO)} = \frac{23}{280} X_0^2 \omega_0^2 M_{(CO)} \int_{0}^{L} \left[1 - \frac{3}{2} \left(\frac{n}{L} \right)^2 + \left(\frac{n}{L} \right)^3 \right]^2 dy$$

$$KE_{(CO)} = \frac{23}{280} X_0^2 \omega_0^2 M_{(CO)} \int_{0}^{L} \left[1 - \frac{3}{2} \left(\frac{n}{L} \right)^2 + \left(\frac{n}{L} \right)^3 \right]^2 dy$$

$$KE_{(CO)} = \frac{23}{280} X_0^2 \omega_0^2 M_{(CO)} \int_{0}^{L} \left[1 - \frac{3}{2} \left(\frac{n}{L} \right)^2 + \left(\frac{n}{L} \right)^3 \right]^2 dy$$

And the second of th

EE 245: Introduction to MEMS

