EE 245: Introduction to MEMS Lecture 20: Equivalent Circuits I

· Announcements:

· Lecture schedule for the next 4 weeks:

Monday	Tuesday	Wednesday	Thursday	Friday
Nov. 2 Lecture	3 Midterm	4	5 Lecture	6
5-6:30	3:30-5		3:30-5	
241 Cory	Moffitt		Moffitt	
9 Lecture 5-6:30 241 Cory	10 Lecture 3:30-5 Moffitt	11	15 Lecture 3:30-5 Moffitt	13
16 Discuss 3:30-5 241 Cory	17	18	19	20
23 Lecture 5-6:30 241 Cory	24 Lecture 3:30-5 Moffitt	25	26	27

- · HW#6 will be posted today
- · Reading: Senturia, Chpt. 5
- · Lecture Topics:

 - ⇔ Electromechanical Analogies
- · Reading: Senturia, Chpt. 5, Chpt. 6
- · Lecture Topics:
 - ♦ Energy Conserving Transducers
 - ♦ Parallel-Plate Capacitive Transducers

EE 245: Introduction to MEMS Lecture 20: Equivalent Circuits I

 Mechanical-to-electrical correspondence in the current analogy:

Mechanical Variable	Electrical Variable	
Damping, c	Resistance, R	
Stiffness ⁻¹ , k ⁻¹	Capacitance, C	
Mass, <i>m</i>	Inductance, L	
Force, f	Voltage, V	
Velocity, v	Current, <i>I</i>	

$$\frac{X}{F}(j\omega)$$
? $\frac{1}{keq}\left[-\omega^2\frac{Meq}{keq}+1+j\frac{(eq\omega)}{keq}\right]^{-1}$

EE 245: Introduction to MEMS Lecture 20: Equivalent Circuits I

<u>EE 245: Introduction to MEMS</u> Lecture 20: Equivalent Circuits I

