EE 245: Introduction to MEMS

- · Announcements:
- · Lecture schedule for the next 3 weeks:

Monday	Tuesday	Wednesday	Thursday	Friday
9 Lecture 5-6:30 241 Cory	10 Lecture 3:30-5 Moffitt	11	15 Lecture 3:30-5 Moffitt	13
16 Discuss 3:30-5 241 Cory	17	18	19	20
23 Lecture 5-6:30 241 Cory	24 Lecture 3:30-5 Moffitt	25	26	27

- · Reading: Senturia, Chpt. 5, Chpt. 6
- · Lecture Topics:
 - - Charge Control
 - Voltage Control
 - ♦ Parallel-Plate Capacitive Transducers
 - Linearizing Capacitive Actuators
 - Electrical Stiffness
 - ♥ Electrostatic Comb-Drive
 - 1st Order Analysis
 - 2nd Order Analysis

Advantages of Electrostatic Actuators:

- Easy to manufacture in micromachining processes, since conductors and air gaps are all that's needed → low cost!
- · Energy conserving \rightarrow only parasitic energy loss through I²R losses in conductors and interconnects
- · Variety of geometries available that allow tailoring of the relationships between voltage, force, and displacement
- Electrostatic forces can become very large when dimensions shrink \rightarrow electrostatics scales well!
- Same capacitive structures can be used for both drive and sense of velocity or displacement
- Simplicity of transducer greatly reduces mechanical energy losses, allowing the highest Q's for resonant structures

Advantages of Electrostatic Actuators:

- · Nonlinear voltage-to-force transfer function
- Relatively weak compared with other transducers (e.g., piezoelectric), but things get better as dimensions scale

