

Successive Diffusions

- For actual processes, the junction/diffusion formation is only one of many high temperature steps, each of which contributes to the final junction profile
- Typical overall process:
 - 1. Selective doping
 - Implant \rightarrow effective (Dt)₁ = $(\Delta R_p)^2/2$ (Gaussian)
 - Drive-in/activation $\rightarrow D_2 t_2$
 - 2. Other high temperature steps
 - (eg., oxidation, reflow, deposition) $\rightarrow D_3t_3$, D_4t_4 , ...
 - Each has their own Dt product
 - 3. Then, to find the final profile, use

$$(Dt)_{tot} = \sum_{i} D_{i} t_{i}$$

in the Gaussian distribution expression.

EE C245: Introduction to MEMS Design

ott 4 C Neuron

The Diffusion Coefficient

 $D=D_o \exp\!\left(-rac{E_A}{kT}
ight)$ (as usual, an Arrhenius relationship)

Table 4.1 Typical Diffusion Coefficient Values for a Number of Impurities.

Element	$D_0(\text{cm}^2/\text{sec})$	$E_{A}(eV)$
В	10.5	3.69
Al	8.00	3.47
Ga	3.60	3.51
In	16.5	3.90
P	10.5	3.69
As	0.32	3.56
Sb	5.60	3.95

EE C245: Introduction to MEMS Design

LecM 4

guyen 8/20/09

Why Polysilicon? Compatible with IC fabrication processes \$ Process parameters for gate polysilicon well known \$ Only slight alterations needed to control stress for MEMS applications Stronger than stainless steel: fracture strength of polySi ~ 2-3 GPa, steel ~ 0.2GPa-1GPa Young's Modulus ~ 140-190 GPa Extremely flexible: maximum strain before fracture ~ 0.5% Does not fatigue readily Several variations of polysilicon used for MEMS \$ LPCVD polysilicon deposited undoped, then doped via ion implantation, PSG source, POCl₃, or B-source doping ♦ In situ-doped LPCVD polysilicon Attempts made to use PECVD silicon, but quality not very good (yet) → etches too fast in HF, so release is difficult

