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EE C245 - ME C218
Introduction to MEMS Design
Fall 2009

Prof. Clark T.-C. Nguyen

Dept. of Electrical Engineering & Computer Sciences
University of California at Berkeley
Berkeley, CA 94720

Lecture Module 1: Admin & Overview

ﬁ; Course Overview
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* Goals of the course:
% Accessible to a broad audience (minimal prerequisites)
% Design emphasis
* Exposure to the techniques useful in analytical design
of structures, transducers, and process flows
% Perspective on MEMS research and commercialization
circa 2009

* Related courses at UC Berkeley:
% EE 143: Microfabrication Technology
% CS 194 (EE 147): Introduction to MEMS
% ME 119: Introduction to MEMS (mainly fabrication)
% BioEng 121: Introduction to Micro and Nano
Biotechnology and BioMEMS
% ME C219 - EE C246: MEMS Design

* Assumed background for EE C245: graduate standing in
engineering or physical/bio sciences
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Course Overview
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The mechanics of the course are summarized in the course
handouts, given out in lecture today
% Course Information Sheet
* Course description
* Course mechanics
* Textbooks
* Grading policy
% Syllabus
@ Lecture by lecture timeline w/ associated reading
sections
* Midterm Exam: tentatively set for Thursday, Oct. 23
* Final Exam: Saturday, Dec. 20, 12:30-3:30 p.m.
* Change this Final Exam time?
* Project due date TBD (but near semester’s end)
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Lecture Outline
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* Reading: Senturia, Chapter 1
* Lecture Topics:

% Definitions for MEMS
%, MEMS roadmap

& Benefits of Miniaturization




MEMS: Micro Electro Mechanical System

[ UG;Berkeley

A device constructed using micromachining (MEMS) tech.

* A micro-scale or smaller device/system that operates mainly
via a mechanical or electromechanical means

* At least some of the signals flowing through a MEMS device
are best described in terms of mechanical variables, e.g.,
displacement, velocity, acceleration, temperature, flow

Input: Output:
voltage, current voltage, current
acceleration, velocity MEMS acceleration, velocity

light, heat ... light, heat, ...

! [Wu, UCLA]
Control:

voltage, current
acceleration
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Transducer to
Convert Control
to a Mechanical
Variable (e.g.,

displacement, velocity
velocity, stress, liaht. heat —
heat, ...) Ight, heat, ... ; —

Angle set by mechanical means
to control the path of light
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| Other Common Attributes of MEMS
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* Feature sizes measured in microns or less  |njafi, Michigan]

80 mm Gimballed, Spinning Micromechanical
Macro-Gyroscope Vibrating Ring*Gyrosco e

b

Signal Conditioning Circuits

* Merges computation with sensing and actuation to change the
way we perceive and control the physical world

* Planar lithographic technology often used for fabrication
% can use fab equipment identical to those needed for IC's
% however, some fabrication steps transcend those of
conventional IC processing
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: Bulk Micromachining and Bonding
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Micromechanical
Vibrating Ring Gyroscope

——

* Use the wafer itself as the
structural material

* Adv: very large aspect
ratios, thick structures

* Example: deep etching and
wafer bonding
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[Najafi, Michigan]

Glass Substrate f \

Microrotor
Anchor (for a microengine)

) \
Metal Interconnect

W Surface Micromachining
" UGBerkeley
Structural Material
Release Etch  (e.g., polysilicon, nickel, eic.) Sacrificial Oxide
Barrier A

Hydrofluoric
Acid
Release
Solution

L

Free-Standing I

Resonator Beam
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ilicon Substrate

Silicon Substrate

* Fabrication steps compatible with planar IC processing




& Single-Chip Ckt/MEMS Integration
UGB 1K L ——
* Completely monolithic, low phase noise, high-Q oscillator

(effectively, an integrated crystal oscillator)

=

Oscilloscope
Output

) _f Waveform
BT T
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o < i [Nguyen, Howe 1993]

* To allow the use of >600°C processing temperatures,
tungsten (instead of aluminum) is used for metallization

w 3D Direct-Assembled Tunable L

. S

[Ming Wu, UCLA]
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" Technology Trend and Roadmap for MEMS
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(mostly sensors)
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* The MEMS Advantage-
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Example: Micromechanical Accelerometer

Tiny mass means
small output = need
integrated transistor

circuits to compensate

% >30X size reductia
accelerometer mec
% allows integration

Basic Operation Principle
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" Displacement
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Spring

Inertial Force
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A Proof Mass

Acceleration




Digital Micromirror
Device (DMD)

nalog Devices ADXR n

Adv.: faster switching, low
Integrated Gyroscope

loss, larger networks

Weapons, Caliper
Safing, Arming,
and Fusing

AOptical Switches
& Aligners

increasing ahi

. . . |_ Adv.: low loss, fast
100 10° 10 switching, high fill factor

mber of Mechanical Components
increasing ability to sense and act

Adv.: small size, small
sample, fast analysis speed
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increasing power consumption

Technology Trend and Roadmap for MEMS
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Lucrative Ultra-Low Power Territory
(e.g, mechanically powered devices)
T T 1 ] 1 1
Majority of10° 10t 10> 10® 10* 105 10° 107 108 10°
Early MEMS Number of Mechanical Components

Devices ) ) .
(mostly sensors) increasing ability to sense and act
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Benefits of Size Reduction: MEMS

B [
* Benefits of size reduction clear for IC's in elect. domain
Y size reduction = speed, low power, complexity, economy

* MEMS: enables a similar concept, but ...
MEMS extends the benefits of size reduction
beyond the electrical domain

-

Performance enhancements for application
domains beyond those satisfied by electronics
in the same general categories

Speed m) Frequency 1 , Thermal Time Const. v

Power Consumption mE) Actuation Energy ¥ , Heating Power V¥

Complexity mE)> Integration Density A , Functionality 4

Economy mE) Batch Fab. Pot. A (esp. for packaging)
Robustness mE)> g-Force Resilience M
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