

### EE C245 - ME C218 Introduction to MEMS Design Fall 2009

Prof. Clark T.-C. Nguyen

Dept. of Electrical Engineering & Computer Sciences
University of California at Berkeley
Berkeley, CA 94720

Lecture Module 3: Oxidation & Film Deposition

E C245: Introduction to MEMS Design

LecM 3

C. Nguyer

8/20/09

1

#### UC Berkeley

#### Lecture Outline

- Reading: Senturia, Chpt. 3; Jaeger, Chpt. 2, 3, 6
  - SExample MEMS fabrication processes
  - **♥** Oxidation
  - **♥ Film Deposition** 
    - **◆** Evaporation
    - ◆ Sputter deposition
    - ◆ Chemical vapor deposition (CVD)
    - ◆ Plasma enhanced chemical vapor deposition (PECVD)
    - **←** Epitaxy
    - ◆ Atomic layer deposition (ALD)
    - Electroplating

EE C245: Introduction to MEMS Design

LecM 3

. Nguyen

8/20/09



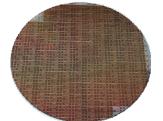
#### **MEMS** Fabrication

E C245: Introduction to MEMS Design

ecM.

C. Nguyen

8/20/09


#### Making Mechanical Devices

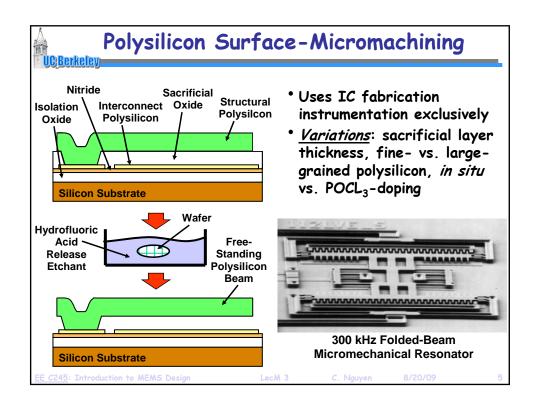
#### **UCBerkeley**

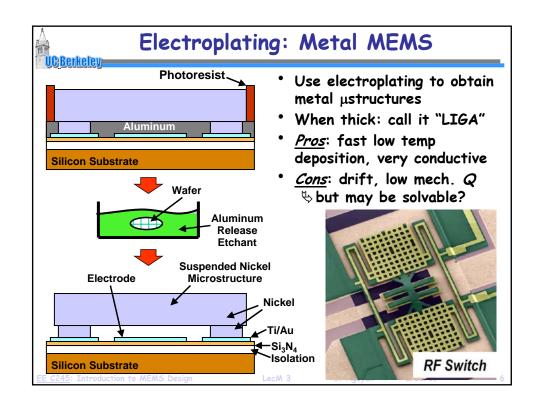
- How best does one make a mechanical product?
- Assembly line production?
  - \$ Pick and place parts
  - Used for many macroscopic mechanical products
  - ♥ Robotic automation greatly reduces cost
- <u>Problem</u>: difficult to do this with MEMS-scale parts (but not impossible, as we'll soon see ...)
- <u>Solution</u>: borrow from integrated circuit (IC) transistor technology
  - Use monolithic wafer-level fabrication methods
  - Harness IC's batch methods, where multiple devices are achieved all at once

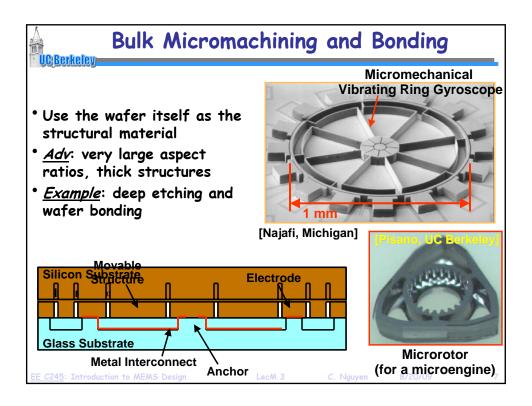


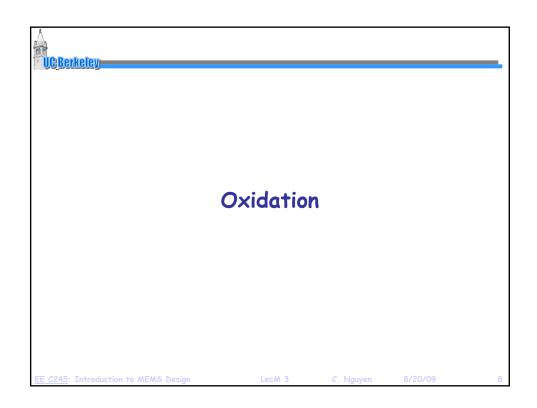
**Automobile Assembly Line** 




**CMOS Integrated Circuit Wafer** 


EE C245: Introduction to MEMS Design


LecM :


C. Nguyen

8/20/09





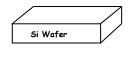


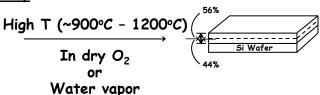


#### Thermal Oxidation of Silicon

#### UC Berkeley

- \* Achieved by heating the silicon wafer to a high temperature (~900°C to 1200°C) in an atmosphere containing pure oxygen or water vapor
- Enabling reactions:


For dry oxygen:


For water vapor:

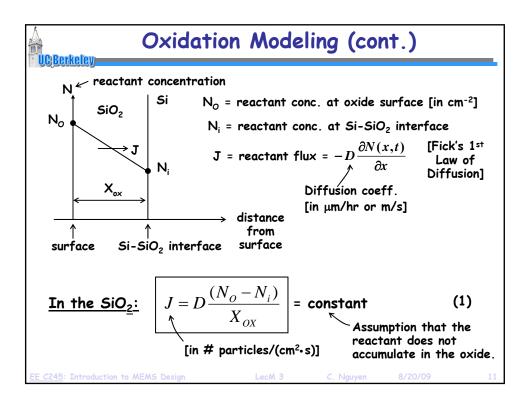
Si + 
$$O_2 \rightarrow SiO_2$$

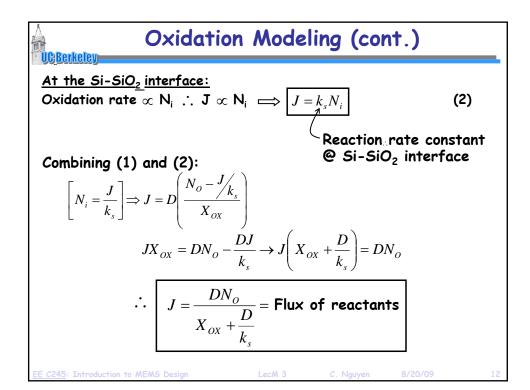
$$Si + 2H_2O \rightarrow SiO_2 + 2H_2$$

#### Schematically:






.ecM


Nouver

silicon-oxide interface

8/20/09

Oxidation Modeling **UC**Berkeley (1) <u>Initially</u>: (no oxide @ surface) gas stream ⋄ Growth rate determined by Si reaction rate @ the surface (2) As oxide builds up: gas stream Reactant must diffuse to Si oxide surface where the oxidation Si reaction takes place ⋄ Growth rate governed more by rate of diffusion to the





#### Oxidation Modeling (cont.)

**UC**Berkelev

Find an expression for  $X_{OX}(t)$ : oxidizing flux

Rate of change of oxide layer thickness w/time 
$$= \frac{dX_{OX}}{dt} = \frac{J}{M} = \frac{DN_O/M}{X_{OX} + D/k_s}$$
 (3)

# of molecules of oxidizing species incorporated into a unit volume of oxide  $= 2.2 \times 10^{22} cm^{-3} \text{ for } O_2$   $= 4.4 \times 10^{22} cm^{-3} \text{ for } H_2O$ 

Solve (3) for  $X_{OX}(t)$ : [Initial condition  $X_{OX}(t=0)=X_i$ ]

$$\frac{dX_{OX}}{dt} = \frac{DN_O/M}{X_{OX} + D/k_s} \quad \text{Terms } \int_{X_s}^{X_{OX}} \left(X_{OX} + \frac{D}{k_s}\right) dX_{OX} = \int_0^t \frac{DN_O}{M} dt$$

#### Oxide Thickness Versus Time

**UC Berkeley** 

Result:

additional time required to grow 
$$X_i$$
 time required to grow  $X_i$  to go from  $X_i \to X_{OX}$  [ $X_i = \text{initial oxide thickness}$ ]
$$X_{OX}(t) = \frac{A}{2} \left\{ \left[ 1 + \frac{4B}{A^2}(t+\tau) \right]^{\frac{1}{2}} - 1 \right\}$$

$$X_{OX}(t) = \frac{A}{2} \left[ \left[ 1 + \frac{4B}{A^2} (t + \tau) \right]^{\frac{1}{2}} - 1 \right]$$

where  $A = \frac{2D}{k_s}$   $\tau = \frac{X_i^2}{B} + \frac{X_i}{(B/A)}$ 

$$B = \frac{2DN_O}{M} \qquad D = D_O \exp\left(-\frac{E_A}{kT}\right)$$

i.e., D governed by an Arrhenius relationship → temperature dependent

#### Oxidation Modeling (cont.)

UC Berkeley

For shorter times:

$$\left[ (t+\tau) << \frac{A^2}{4B} \right] \Rightarrow X_{OX}(t) = \left( \frac{B}{A} \right) (t+\tau) \Rightarrow \text{oxide growth limited by reaction at the Si-SiO}_2 \text{ interface}$$

Taylor expansion (first term after 1's cancel)

 $^{
u}$  linear growth rate constant

For long oxidation times: oxide growth diffusion-limited

$$\left[ \left( t + \tau \right) >> \frac{A^2}{4B} \right] \Rightarrow X_{OX} \left( t \right) = \sqrt{B(t + \tau)} \approx \sqrt{Bt}$$

$$t >> \tau$$
Parabolic rate constant

EE C245: Introduction to MEMS Design

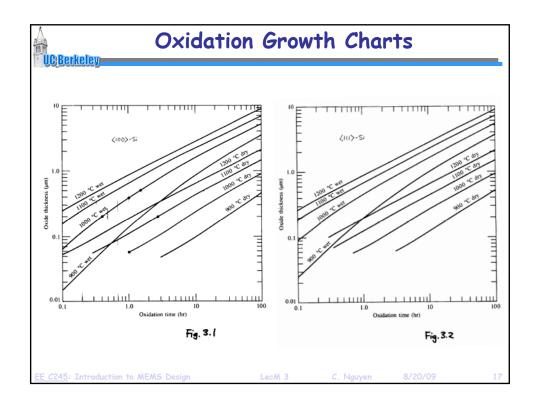
LecM 3

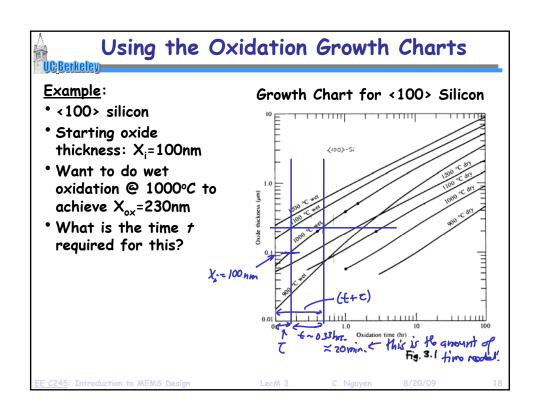
C. Nguyer

8/20/09

15

#### UGBerkeley


#### Oxidation Rate Constants


Jenneley —

**Table 6–2** Rate constants describing (111) silicon oxidation kinetics at 1 Atm total pressure. For the corresponding values for (100) silicon, all  $C_2$  values should be divided by 1.68.

| Ambient            | <b>B</b>                                              | B/A                                                     |
|--------------------|-------------------------------------------------------|---------------------------------------------------------|
| Dry O <sub>2</sub> | $C_1 = 7.72 \times 10^2 \mu\text{m}^2 \text{hr}^{-1}$ | $C_2 = 6.23 \times 10^6 \mu \text{m hr}^{-1}$           |
|                    | $E_{\rm I}=1.23~{\rm eV}$                             | $E_2 = 2.0 \mathrm{eV}$                                 |
| Wet O <sub>2</sub> | $C_1 = 2.14 \times 10^2 \mu\text{m}^2 \text{hr}^{-1}$ | $C_2 = 8.95 \times 10^7 \mathrm{\mu m}\mathrm{hr}^{-1}$ |
|                    | $E_1 = 0.71 \text{ eV}$                               | $E_2 = 2.05 \text{ eV}$                                 |
| H <sub>2</sub> O   | $C_1 = 3.86 \times 10^2 \mu\text{m}^2 \text{hr}^{-1}$ | $C_2 = 1.63 \times 10^8 \mathrm{\mu m}\mathrm{hr}^{-1}$ |
|                    | $E_1 = 0.78 \mathrm{eV}$                              | $E_2 = 2.05 \mathrm{eV}$                                |

 Above theory is great ... but usually, the equations are not used in practice, since measured data is available
 Rather, oxidation growth charts are used





#### Factors Affecting Oxidation

#### UC Berkeley

- In summary, oxide thickness is dependent upon:
  - 1. Time of oxidation
  - 2. Temperature of oxidation
  - 3. Partial pressure of oxidizing species ( $\propto N_a$ )
- Also dependent on:
  - 4. Reactant type:

Dry O2

Water vapor ⇒ faster oxidation, since water has a higher solubility (i.e., D) in SiO<sub>2</sub> than O<sub>2</sub>

- 5. Crystal orientation:
  - <111> 

    faster, because there are more bonds available at the Si-surface
  - <100> ← fewer interface traps; smaller # of unsatisfied Si-bonds at the Si-SiO₂ interface

E C245: Introduction to MEMS Design

LecM 3

C Nouver

8/20/0

19

#### Factors Affecting Oxidation

#### **UCBerkeley**

- 6. Impurity doping:
  - P: increases linear rate const.

    no affect on parabolic rate constant
    faster initial growth 

    surface reaction rate limited
  - B: no effect on linear rate const.
    increases parabolic rate const.
    faster growth over an initial oxide → diffusion faster



#### Thin Film Deposition

F C245: Introduction to MFMS Design

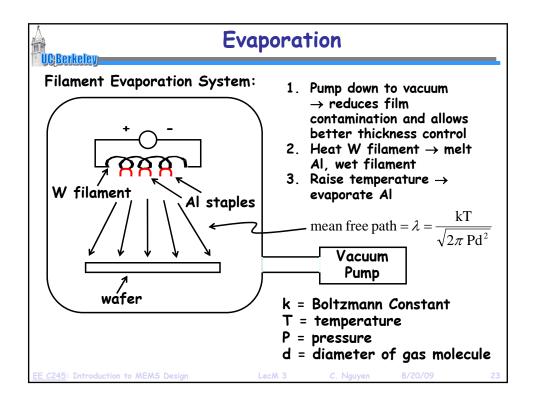
ecM

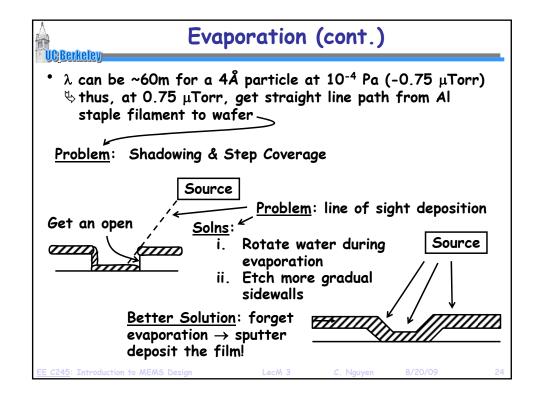
C. Nguyen

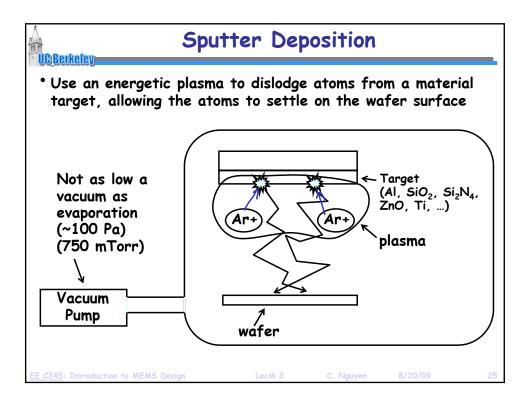
2/20/00

21

#### II @ Rerkelev


#### Thin Film Deposition


- Methods for film deposition:
  - **♥** Evaporation
  - ♦ Sputter deposition
  - \$ Chemical vapor deposition (CVD)
  - ♦ Plasma enhanced chemical vapor deposition (PECVD)
  - **⇔** Epitaxy


  - ♦ Atomic layer deposition (ALD)

#### **Evaporation:**

- Heat a metal (Al, Au) to the point of vaporization
- Evaporate to form a thin film covering the surface of the Si wafer
- Done under vacuum for better control of film composition







#### Sputter Deposition Process

UC Berkeley

- <u>Step-by-step procedure</u>:
  - 1. Pump down to vacuum

(~100 Pa) 
$$\rightarrow$$
 1 Pa = 9.8×10<sup>-6</sup> atm  $\left(\frac{760 \text{ Torr}}{\text{atm}}\right)$  = 0.0075012 Torr

- 2. Flow gas (e.g., Ar)
- 3. Fire up plasma (create Ar+ ions)  $\rightarrow$  apply dc-bias (or RF for non-conductive targets)
- 4. Ar+ ions bombard target (dislodge atoms)
- 5. Atoms make their way to the wafer in a more random fashion, since at this higher pressure,  $\lambda$  ~60 $\mu$ m for a 4Å particle; plus, the target is much bigger
- Result: better step coverage!

#### Problems With Sputtering

#### **UC Berkeley**

- 1. Get some Ar in the film
- 2. Substrate can heat up
  - □ up to ~350°C, causing nonuniformity across the wafer
  - but it still is more uniform than evaporation!
- 3. Stress can be controlled by changing parameters (e.g., flow rate, plasma power) from pass to pass, but repeatability is an issue

Solution: use Chemical Vapor Deposition (CVD)

E C245: Introduction to MEMS Design

LecM :

C. Nguye

8/20/09

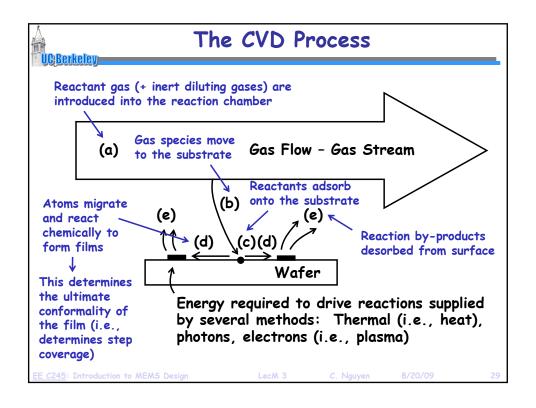
27

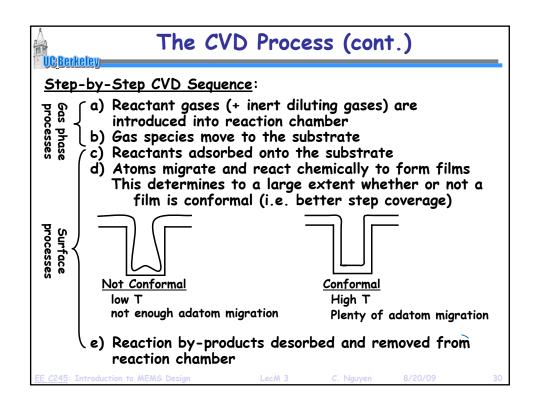
#### Chemical Vapor Deposition (CVD)

#### UC Berkeley

- Even better conformity than sputtering
- Form thin films on the surface of the substrate by thermal decomposition and/or reaction of gaseous compounds
  - Desired material is deposited directly from the gas phase onto the surface of the substrate
  - $\diamondsuit$  Can be performed at pressures for which  $\lambda$  (i.e., the mean free path) for gas molecules is small
  - \$ This, combined with relatively high temperature leads to

Excellent Conformal
Step Coverage!

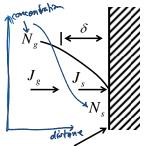

➡ Types of films: polysilicon, SiO<sub>2</sub>, silicon nitride, SiGe, Tungsten (W), Molybdenum (M), Tantalum (Ta), Titanium (Ti), ...


EE C245: Introduction to MEMS Design

LecM 3

. Nguyen

8/20/09








#### CVD Modeling

#### Simplified Schematic:



 $N_a$  = conc. of reactant molecules in the gas stream

 $N_s$  = conc. of reactant molecules at the surface

 $J_s$  = flux of gas molecules at the surface

 $J_a = flux$  of molecules diffusing in from the gas stream

surface

Effective diffusion const. for the gas molecule

$$J_s = k_s N_s$$
 [ $k_s$  = surface reaction rate const.]

$$J_{g} = \left( \frac{\overline{D}_{g}}{\delta} \right) \! \left( \! N_{g} - N_{s} \right) = h_{g} \! \left( \! N_{g} - N_{s} \right) \quad \text{Vapor phase mass-transfer coefficient}$$

Governing Equations:

CVD Modeling (cont.)

$$\underbrace{\left[J_s=J_g=J\right], \left[N_s=\frac{J_s}{k_s}\right]}_{ \text{Otherwise reactants will}} J=h_g \bigg(N_g-\frac{J}{k_s}\bigg)=h_g N_g-\frac{h_g J}{k_s}$$
 build up somewhere!

$$J\left(1+\frac{h_g}{k_s}\right) = h_g N_g \rightarrow \boxed{J = \frac{k_s h_g}{k_s + h_g} N_g = \left(\frac{k_s}{h_g}\right) N_g}$$

growth rate = 
$$\frac{\text{flux}}{\text{# molecules incorporated/unit volume}} = \frac{J}{N}$$

$$= \frac{J}{N} = \sqrt{\frac{k_s h_g}{k_s + h_g} \frac{N_g}{N}} = (k_s || h_g) \frac{N_g}{N} = \text{growth rate}$$

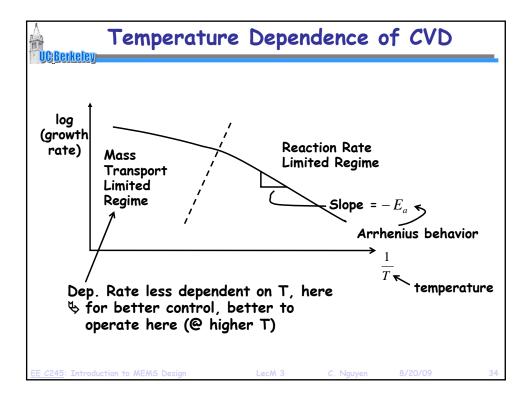
#### CVD Modeling (cont.)

UC Berkeley

\* <u>Case</u>:  $k_s >> h_g$   $\stackrel{\mbox{$\mbox{$\mbox{$$$}}$}}{\mbox{$\mbox{$$$}$}}$  surface reaction rate >> mass transfer rate

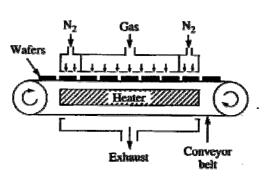
growth rate = 
$$h_g \frac{N_g}{N}$$
 (mass-transfer-limited)

• <u>Case</u>:  $h_g >> k_s$   $\$  mass transfer rate >> surface reaction rate


growth rate = 
$$k_s \frac{N_g}{N}$$
 (surface-reaction-limited)  $\sim R_o^{-E_a/kT}$  (Arrhenius character)

E C245: Introduction to MEMS Design

LecM :


C. Nguye

8/20/09



#### Atmospheric Pressure Reactor (APCVD)

UC Berkeley



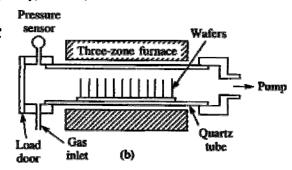
- Once used for silicon dioxide passivation in integrated circuits
- Substrates fed continuously
- Large diameter wafers
- Need high gas flow rates
- Mass transport-limited regime (high pressure, so tougher for gas to get to the wafer surface)

- Problems/Issues:
  - ♥ Wafers lay flat, and thus, incorporate foreign particles
  - ♦ Poor step coverage

E C245: Introduction to MEMS Design

LecM

C. Nguyer


8/20/09

35

#### Low Pressure Reactor (LPCVD)

 Many films available: polysilicon, SiGe, Si<sub>3</sub>N<sub>4</sub>, SiO<sub>2</sub>, phosphosilicate glass (PSG), BPSG, W

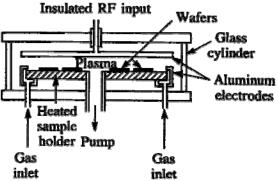
- Temp.:  $300 \rightarrow 1150$ °C
- Press.:  $30 \rightarrow 250 \text{ Pa}$ (200mTorr  $\rightarrow$  2Torr)
- Reaction rate limited; reduced pressure gives gas molecular high diffusivity; can supply reactants very fast!
- Can handle several hundred wafers at a time
- Excellent uniformity



- <u>Problems</u>:
  - \$Low dep. rate (compared to atm.)
  - ♦ Higher T (than atmospheric)
  - ♦ In hot wall reactors, get deposition on tube walls (must clean)

E C245: Introduction to MEMS Design

LecM 3


C. Nguyen

3/20/09

#### Plasma-Enhanced CVD Reactor (PECVD)

UC Berkeley

- RF-induced glow discharge + thermal energy to drive reactions → allows lower temperature deposition with decent conformability
- Still low pressure



- Problems:
  - ♥ Pin-holes
  - ♦ Non-stoichiometric films
  - $\$  Incorporation of  $H_2$ ,  $N_2$ ,  $O_2$  contaminants in film; can lead to outgassing or bubbling in later steps

E C245: Introduction to MEMS Design

LecM 3

C. Nguye

8/20/09

37

#### UC Berkeley ....

#### Polysilicon CVD

#### **Polysilicon Deposition:**

Fairly high temperature 
$$\rightarrow$$
 conformal 600°C SiH<sub>4</sub> $\longrightarrow$  Si + 2H<sub>2</sub> (thermal decomposition of silane) (conformal  $\longrightarrow$  high T) LPCVD (25 to 150 Pa)  $\rightarrow$  100-200Å/min

- In situ doping of polysilicon:
  - ⋄n-type: add PH₃ (phosphine) or Arsine gases (but greatly reduces dep. rate)
  - ⇔p-type: add diborane gas (greatly increases dep. Rate)

#### Silicon Oxide CVD

#### UC Berkeley

#### Silicon Dioxide Deposition:

- After metallization (e.g., over aluminum)
  - ♦ Temperature cannot exceed the Si-Al eutectic pt.: 577°C
  - ♦ Actually, need lower than this (<500°C) to prevent hillocks from growing on Al surfaces
  - ♦ Similar issues for copper (Cu) metallization
- Low temperature reactions:

LPCVD  
LTO  
Reactions
$$\begin{cases}
SiH_4 + O_2 \longrightarrow SiO_2 + 2H_2 \\
(silane) & 300-500°C
\end{cases}$$

$$4PH_3 + 5O_2 \longrightarrow 2P_2O_5 + 6H_2 \\
(phosphine) & 300-500°C
\end{cases}$$
Phosphosilicate glass (PSG)

 $^{ullet}$  Above reactions: not very conformal step coverage ightarrow need higher T for this

E C245: Introduction to MEMS Design

LecM 3

C. Nguyen

8/20/09

39

#### Silicon Oxide CVD (cont.)

#### UC Berkeley

- Phosphosilicate glass can be reflown
  - \$6-8 wt. % allows reflow @ 1000-1100°C
  - ♦ Very useful to achieve smoother topography
  - Lower concentration → won't reflow
  - $\forall$  Higher concentration  $\rightarrow$  corrodes AI if moisture is present
  - ♦ 5-15% P can be used as a diffusion source to dope Si
- Before metallization:
  - ♥ Can use higher temperature → better uniformity and step coverage

or ...

EE C245: Introduction to MEMS Design

LecM :

. Nguyen

8/20/09

#### Silicon Oxide CVD (cont.)

UC Berkeley

$$Si(OC_2H_5)_4 \longrightarrow SiO_2 + by-products$$
 $650-750^{\circ}C$ 
(Tetraethylorthosilicate) (excellent uniformity & conformal step coverage)

E C245: Introduction to MEMS Design

ecM.

C. Nguyen

8/20/09

4.1

#### Silicon Nitride CVD

#### UC Berkeley

#### Silicon Nitride Deposition:

- \* First, note that thermal growth is possible:
  - § Si in NH<sub>3</sub> @ 1000-1100℃
  - ♦ But very slow growth rate, thus, impractical
- LPCVD reactions:

Silane reaction: 
$$3SiH_4 + 4NH_3 \longrightarrow Si_3N_4 + 12H_2$$
 (Atm. Press.)

Dichlorosilane reaction:

$$700-800^{\circ}C$$

$$3SiCl_2H_2 + 4NH_3 \xrightarrow{(LPCVD)} Si_3N_4 + 6HCl + 6H_2$$

Increase and  $T = 835^{\circ}C \longrightarrow Si \text{ rich nitride} \longrightarrow low stress}$ 

<u>Problem:</u> Clobbers your pumps! Expensive to maintain!

EE C245: Introduction to MEMS Design

LecM 3

. Nguyen

8/20/09

#### Silicon Nitride CVD (cont.)

#### UC Berkeley

- Comments on LPCVD nitride films:
  - ⇔ Hydrogen rich: ~8% H₂
  - High internal tensile stresses: films >1000Å crack and peel due to excessive stress
  - & Can get 2μm films with Si-rich nitride
  - $\$  LPCVD gives high resistivity (10<sup>16</sup>  $\Omega$ -cm) and dielectric strength (10 MV/cm)

#### PECVD Nitride:

$$\begin{array}{c} \text{Nitrogen discharge} \\ \text{SiH}_4 + \text{N}_2 & \longrightarrow 2 \text{SiNH} + 3 \text{H}_2 \\ \text{or} \\ \text{SiH}_4 + \text{NH}_3 & \longrightarrow 3 \text{SiNH} + 3 \text{H}_3 \end{array} \end{array} \\ \begin{array}{c} \text{PECVD films:} \\ \text{$\forall$ Non-stoichiometric nitride} \\ \text{$\forall$ 20-25\% H}_2 \text{ content} \\ \text{$\forall$ Can control stress} \\ \text{$\forall$ (10^6 \Omega-cm) resistivity} \end{array}$$

EE C245: Introduction to MEMS Design

LecM 3

C. Nguye

8/20/09

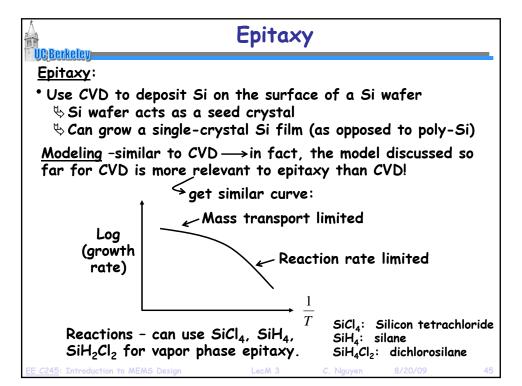
42

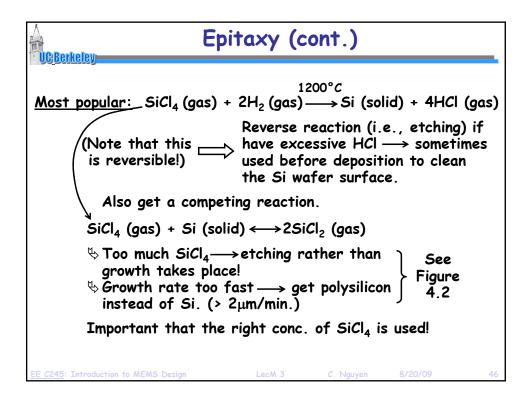
#### . UGBerkeley

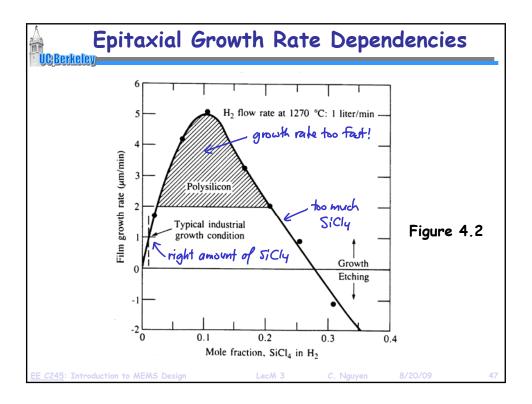
#### Metal CVD

#### **CVD Metal Deposition**:

<u>Tungston (W)</u> - deposited by thermal, plasma or optically-assisted decomposition


$$WF_6 \longrightarrow W + 3F_2$$
  
or via reaction with  $H_2$ :  
 $WF_6 + 3H_2 \longrightarrow W + 6HF$ 


Other Metals - Molybdenum (Mo), Tantalum (Ta), and Titanium (Ti)


$$2MCl_5 + 5H_2 \longrightarrow 2M + 10HCl$$
, where M = Mo, Ta, or Ti

(Even Al can be CVD'ed with tri-isobutyl Al ... but other methods are better.)

(Cu is normally electroplated)

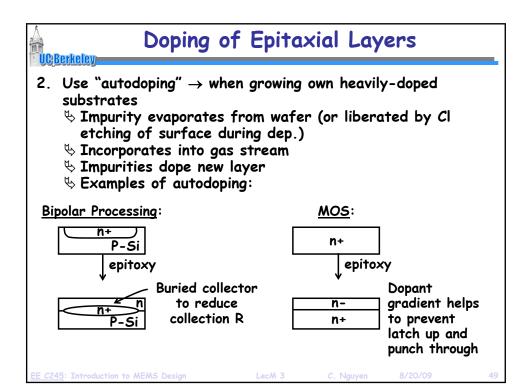


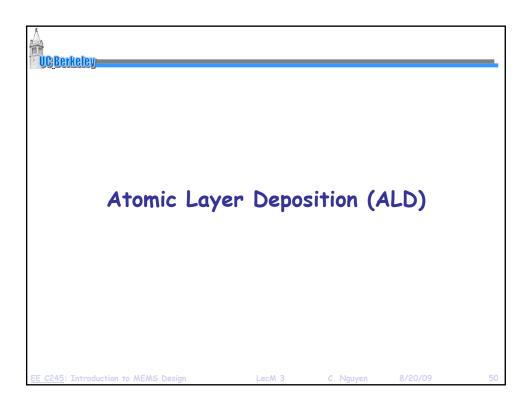


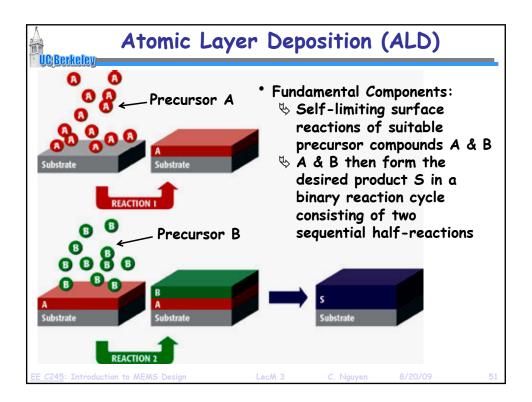


#### Epitaxy (cont.)

Alternative reaction: pyrolytic decomposition of silane:


$$SiH_4 \xrightarrow{650^{\circ}C} Si + 2H_2$$
not reversible, low T, no HCl formation


- however, requires careful control of the reaction to prevent formation of poly-Si
- 🔖 also, the presence of an oxidizing species


#### **Doping of Epitaxial Layers:**

causes silica formation

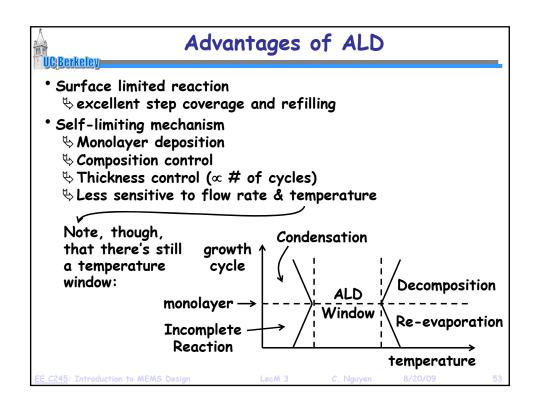
- 1. Just add impurities during growth: Arsine, diborane, Phosphine
  - Scientification Control resistivity by varying partial pressure of dopant species
    - i. Arsine, Phosphine  $\rightarrow$  slow down the growth rate
    - ii. Diborane → enhances growth rate

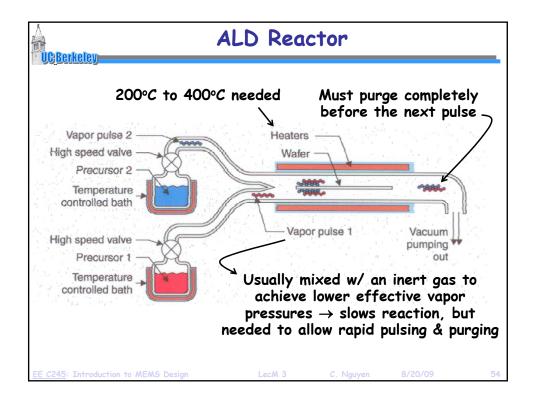


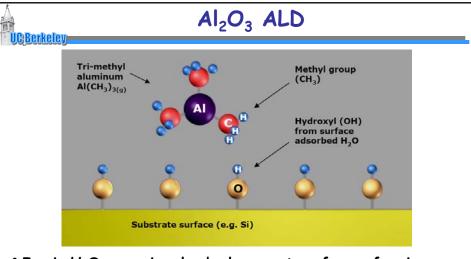




#### Atomic Layer Deposition (ALD)


#### • Remarks:


**UC**Berkeley


- ♥ Both half-reactions must be complete and self-limiting at the monolayer level
- ♦ The total film thickness d(tot) can be "digitally" controlled by the number of applied deposition cycles N(A/B):

$$d(tot) = d(mono) \cdot N(A/B)$$

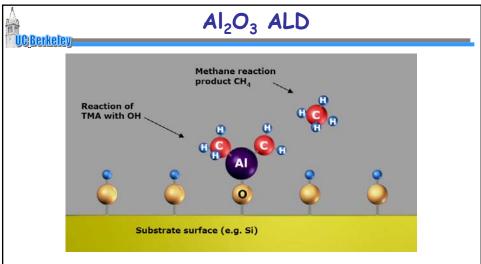
- The reagents A & B in the half reactions are normally chemical reactions
  - → But they don't need to be
  - ◆ They can also represent a physical process, e.g., heating, irradiation, electrochemical conversion







- In air H<sub>2</sub>O vapor is adsorbed on most surfaces, forming a hydroxyl group
- With silicon this forms :Si-O-H (s)
- Place the substrate in the reactor
- Pulse Trimethyl Aluminum (TMA) into the reaction chamber


C245: Introduction to MEMS Design

LecM 3

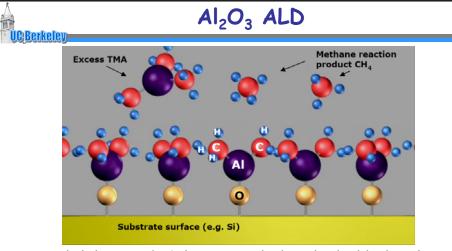
C. Nguyen

8/20/09

55



\* Trimethyl Aluminum (TMA) reacts with the adsorbed hydroxyl groups, producing methane as the reaction product


$$Al(CH_3)_3$$
 (g) + :Si-O-H (s)  $\rightarrow$  :Si-O-Al(CH<sub>3</sub>)<sub>2</sub> (s) + CH<sub>4</sub>

EE C245: Introduction to MEMS Design

LecM 3

. Nguyen

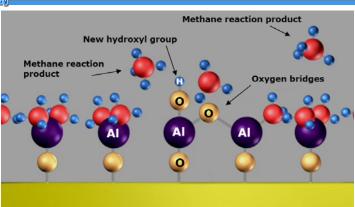
8/20/09



- TrimethylAluminum (TMA) reacts with the adsorbed hydroxyl groups, until the surface is passivated
- TMA does not react with itself, so terminates the reaction to one layer
- This leads to the perfect uniformity of ALD.
- The excess TMA and methane reaction product is pumped away

F C245: Introduction to MFMS Design

chamber.


LecM 3

C. Nauven

57

# \* After the TMA and methane reaction product is pumped away, water vapor (H<sub>2</sub>O) is pulsed into the reaction

#### Al<sub>2</sub>O<sub>3</sub> ALD



- $^{\bullet}$   $H_2O$  reacts with the dangling methyl groups on the new surface forming aluminum-oxygen (Al-O) bridges and hydroxyl surface groups, waiting for a new TMA pulse
- \* Again methane is the reaction product

2 
$$H_2O_{(g)}$$
 + :Si-O-Al(CH<sub>3</sub>)<sub>2 (s)</sub>  $\longrightarrow$  :Si-O-Al(OH)<sub>2 (s)</sub> + 2  $CH_4$ 

E C245: Introduction to MEMS Design

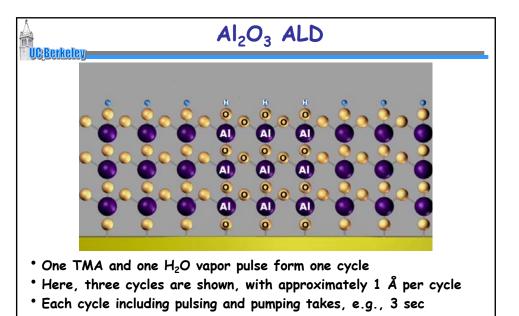
LecM 3

C. Nguyen

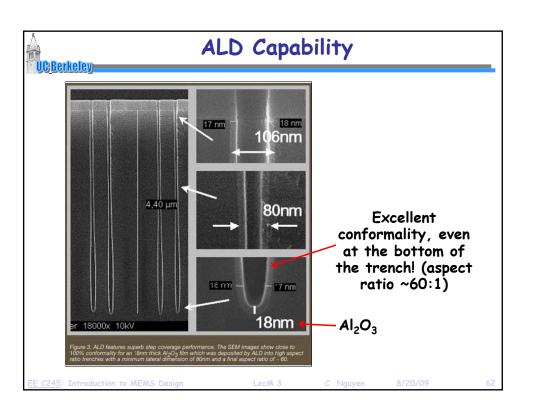
8/20/09

59

## Al<sub>2</sub>O<sub>3</sub> ALD

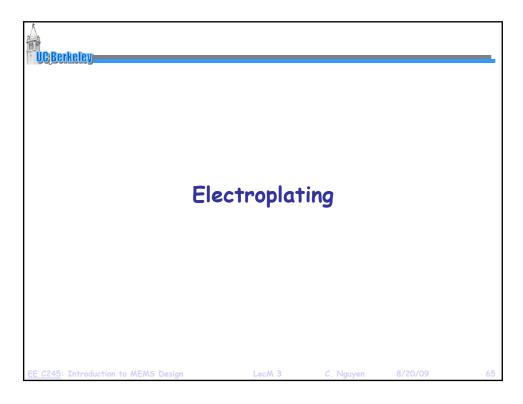

- The reaction product methane is pumped away
- Excess H<sub>2</sub>O vapor does not react with the hydroxyl surface groups
- \* Again, get perfect passivation to one atomic layer

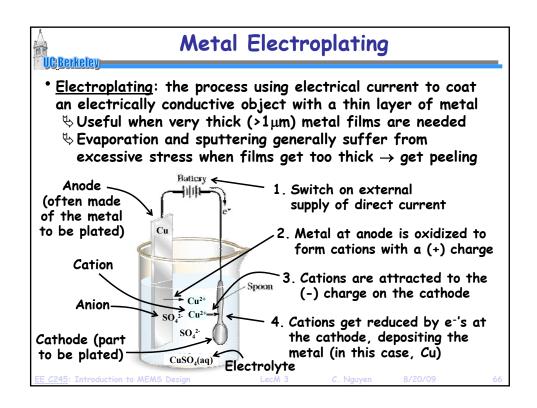
EE C245: Introduction to MEMS Design

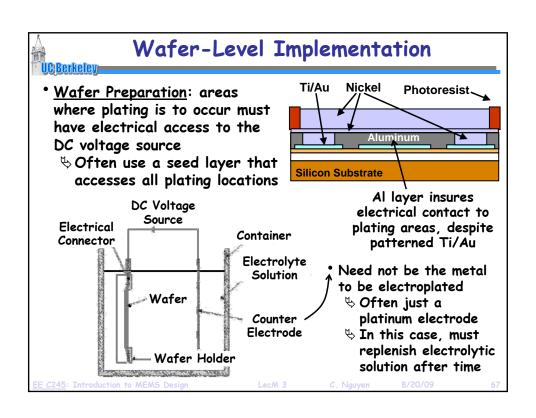

LecM 3

. Nguyen

8/20/09





 $\begin{array}{l} \text{Al(CH}_3)_3 \ _{(g)} \ + \ : \text{Si-O-H} \ _{(s)} \ \longrightarrow \ : \text{Si-O-Al(CH}_3)_2 \ _{(s)} \ + \ \text{CH}_4 \\ \text{2 H}_2O \ _{(g)} \ + \ : \text{Si-O-Al(CH}_3)_2 \ _{(s)} \ \longrightarrow \ : \text{Si-O-Al(OH)}_2 \ _{(s)} \ + \ \text{2 CH}_4 \end{array}$ 




| ALD Versus CVD                                              |                                                              |  |  |  |  |  |
|-------------------------------------------------------------|--------------------------------------------------------------|--|--|--|--|--|
| ALD                                                         | CVD                                                          |  |  |  |  |  |
| Highly reactive precursors                                  | Less reactive precursors                                     |  |  |  |  |  |
| Precursors react separately on the substrate                | Precursors react at the same time on the substrate           |  |  |  |  |  |
| Precursors must not decompose at process temperature        | Precursors can decompose at process temperature              |  |  |  |  |  |
| Uniformity ensured by the saturation mechanism              | Uniformity requires uniform flux of reactant and temperature |  |  |  |  |  |
| Thickness control by counting the number of reaction cycles | Thickness control by precise process control and monitoring  |  |  |  |  |  |
| Surplus precursor dosing acceptable                         | Precursor dosing important                                   |  |  |  |  |  |
| EE C245: Introduction to MEMS Design Le                     | cM 3 C. Nguyen 8/20/09 63                                    |  |  |  |  |  |

| ALD Versus Other Deposition Methods |      |      |        |         |        |        |  |  |
|-------------------------------------|------|------|--------|---------|--------|--------|--|--|
| Method                              | ALD  | MBE  | CVD    | Sputter | Evapor | PLD    |  |  |
| Thickness Uniformity                | Good | Fair | Good   | Good    | Fair   | Fair   |  |  |
| Film Density                        | Good | Good | Good   | Good    | Poor   | Good   |  |  |
| Step Coverage                       | Good | Poor | Varies | Poor    | Poor   | Poor   |  |  |
| Inteface Quality                    | Good | Good | Varies | Poor    | Good   | Varies |  |  |
| Number of Materials                 | Fair | Good | Poor   | Good    | Fair   | Poor   |  |  |
| Low Temp.<br>Deposition             | Good | Good | Varies | Good    | Good   | Good   |  |  |
| Deposition Rate                     | Fair | Poor | Good   | Good    | Good   | Good   |  |  |
| Industrial Apps.                    | Good | Fair | Good   | Good    | Good   | Poor   |  |  |





