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* Reading: Senturia, Chpt. 9

* Lecture Topics:
Y Bending of beams
% Cantilever beam under small deflections
% Combining cantilevers in series and parallel
% Folded suspensions

% Design implications of residual stress and stress gradients
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Bending of Beams
o Beams: The Springs of Most MEMS

7 UC Berkeley

* Springs and suspensions very common in MEMS
% Coils are popular in the macro-world; but not easy to
make in the micro-world
% Beams: simpler to fabricate and analyze; become
“stronger” on the micro-scale — use beams for MEMS

Comb-Driven Folded Beam Actuator
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i Bending a Cantilever Beam
["UC Berkeley,
Free end condition F
VY,
condition: |
AT—X=O: / I
y=0 T ]
dy/dx = 0 AI I I
' T

* Objective: Find relation between tip deflection y(x=L.) and
applied load F

* Assumptions:
1. Tip deflection is small compared with beam length
2. Plane sections (normal to beam's axis) remain plane and
normal during bending, i.e., “pure bending”
3. Shear stresses are negligible

.

8 Reaction Forces and Moments

TR

[ UC Berkeley
. N N
Reclir Lt f)lnt Load  F| Moot de to Fbce:
Moot \> o1 )\, 2 J, W=FL

Howent due o F, hew :
M, = F(L-x)

For 24uilitbaum: M= Hy= F(ex)
Vs < F

(Senturia 53«; owml;'u')
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& Shear Forces

(+) moment leads to
deformation with a (+)
radius of curvature
(i.e., upwards)

deformation with a (-)
radius of curvature
(i.e., downwards)

(+) shear forces
produce clockwise
rotation

(-) shear forces
produce counter-
clockwise rotation
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Beam Segment in Pure Bending

Povtions abave fhe

newid axls go ;,,foj‘ ( XTGHSIOH Neutral Axis = lens#,
U”dﬁrgsd By
Small section of [,ew"“g
a beam bent in < M, ( 5 ) M,
response toa )/ \do ! /
franverse W Nate: (+) ol ; 1 zlﬂ thidness
. e: (+) dlreclion .
%ﬂ:ﬁ of 2 is doamcaznd l;omprcssmn

\.

Consider a segment bounded b7 o dashed lines
defiral by o0

Atz=0: (i, at He neuhnl axls) : seqment length= dc+RelS

Atanyz:  Segiment length = olL = (R-2)cl®
Ca«nlolni@ ) £0):  dL:dy—240 - dx- %d')é

Fortions bebw o neutnd

axis oo jnto Cokpression

Q)
(2)
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Beam Segment in Pure Bending (cont.)
["UC Betkeley

Thus, Ho oxint shroin @ 2
Ay = Origind (vnﬁmml)]a
Jegment Ie'gh»

Thus, shrain varies lfneavl7 abwj beam
thidenass, and has g maximum vddue

Ex i < 2

Of course, Here (5 a
correrpdno(uy oxied stegs:

o;«?é,?

a"- dx 2

This graaft'en‘l in phegs Hor genemhj a
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R 69‘ [
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24
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---ﬁ-Comreer\
@ ST TR ™

=
bending momerrl‘.
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UC Berkelpu

/Irrrer'nal Bending Moment

"Omenf' around 4
dhis point

Small section of
a beam bent in
response to a <

transverse load

() vadis
of curcadu

\.
To get e *‘Q’W('MMM

Tension

$Wr|‘eg"ﬁ*le Shees thraugh the hidney of the beam "

Neutral Axis

Compression
Eﬂecb‘vely, 2 :disttne §/
He moment referenc pt,

M= j [(wd;)a:,] %’/’S hlz EW%
fore {

N

l[_\—/
,,_Wh :12 Homent of Inecfia
( M Nete: () vadius of curvedure

— () infernd £erdiv3 moment!

Copyright © 2009 Regents of the University of California



EE 245: Introduction to MEMS CTN 10/5/09
Module 8: Microstructural Elements

o Differential Beam Bending Equation

%_-‘UC_Ber‘kelp.u
w( le
X

S~ Neutral axis of a
bent cantilever beam

lortte suf 3eome{y-(c relationships: {SM‘“ %'e]
cos®« % — ds: dy

— dszdx
cos©
cw dw
tan0:Z% = glo 6{5967"\@ a~
=y pont ‘? ;—: Q)
ds - 46 — -h-:%g > E=7¢- (?)
H mGl: . fdw__hm Differenhd Equadion fon

¥
“UC Berkeley

= T
e

Example: Cantilever Beam w/ a
Concentrated Load
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% Cantilever Beam w/ a Concentrated Load
I"UC Berkeley

Free end condition & Point

% " \i' Load
_________ H,._._._._Ih
7 il

I /“V‘f-\_l/
Iniernal Moment @ Po.n"han'x: M == F(L-%)

Clamped end
condition:
At x=0:
w=0
dw/dx = O

Thus: dw_ F L- Clamped End @.C's: W(x:0)<0, g‘f(’xw}‘O
& et Free End £.C%: nove
Solw'héd' ofpresﬂw%ur:

= use lap(m; or we tod Solufim ur= A+ BxkCx*402S, Hon apphy B.C's

'xz(‘ [M@c’ﬂh @ x dve ¥ a point load

G F aﬁ,h'ed at xsL

i Cantilever Beam w/ a Concentrated Load

[

I >

UC Berkeley
Free end condition Fe Point
% . Load
Clamped end M L ,
condition:~—_ A4 __ £_+ ....... _I h
At x=0: T
w=0 X L
dw/dx = 0 Z |
I

Maximem defoction @ ¥=1: Note Hat i genend,
s .| 3EL shires 5 a Furckion
(J'M- (3E$)F e F'(——)N(Xd) = kﬂvdhca’hm'&

where k. EE—I- 2 chffness @ locakion 5L
] 2 L/ g&L{W/m,W%h/m
s Ll =L h siléan — E=1506f4
{1‘ 7z Wh 173 kew EwF poly

ket (:soo)(y)(,%) 0.6 Nim.
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%  Maximum Stress in a Bent Cantilever
["UC Betkeley

From beface, Ha wdlus of curverture |s Given by

L. fi'*_fs E(Y) = maximizel wlere R0
L’bccvﬂ a'f-'uo A‘l?rwl,u)len’)(w:

@—; "““;_f_L_ a’_\
<

\( slope=0
Stain is maximied : ope
@M@:arfme——r!en.rﬂe c _}L hEL
@ At botfum surfae = Compressive mx’ " RTZRT ZE

3 FL 1z
[ T ]f'; é"'ax 2 E Wit Ewb.’ ¢

S }—E LS Wl«." lj Maximum Shress (n 0\)
Rent Cantilever

M
Hik
|" UC Betkeley,

Stress Gradients in Cantilevers
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i Vertical Stress Gradients
[ UC Berkeley,

* Variation of residual stress in the direction of film growth
* Can warp released structures in z-direction

tﬂm Stress Gradients in Cantilevers
UC Berkeley

* Below: surface micromachined cantilever deposited at a high
temperature then cooled — assume compressive stress

T T I —

Before release After release,
but before bending

Average

stress Tension

Ox
Compression Compression
Hi2 Hi2 After which,

+H2

Compression Y z 2 f 2 stress is
Stress after release, relieved
Stress before release but before bending After bending
. But stress
Stress gradient Once released, beam gradient remains

length increases slightly =5 induces moment
to relieve average stress | 4.+ bends beam
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&  Stress Gradients in Cantilevers (cont)
[ UC Berkeley,
Find Ho vadius of curvahwe.
Pmr-('vreleq.m,&x,drfm.r ie: 0-’0;"(";%%
The Mkmt mement: _—
-,_ 2 24,2
Ha: -r [bv-ae) -2 ~ ng( (n/))’{? Wl EJH_)\-N,
2 H H
'W %”‘F" %»%l .?lX) g WM
Thuis, Ho cdits cuevatineis: v o
I :-‘_’ix—i =—££‘= —EEVH)= —‘—E”i
ol [y T
Riaxlaf Shess [I 2z Wh
GGJIC'\"' . _(_’E__' H RGJ(W of [“lﬂlﬁ{'llq
=[R2 ZIH T | for a Cantilever
- Wl Shes Endiest
0= -;-_E_.E_ = R can be wsed
¢-») R b defermine shary W?en‘f
R .
i Measurement of Stress Gradient
[ UCBerkeley

* Use cantilever beams
% Strain gradient (I = slope of strain-thickness curve)
causes beams to deflect up or down
% Assuming linear strain gradient I, z = T'L2/2

. compresslve

. tenslle

=

mpr—
p— ——

[P. Krulevitch Ph.D.]
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Folded-Flexure Suspensions
i Folded-Beam Suspension
7 UC Berkeley

* Use of folded-beam suspension brings many benefits
% Stress relief: folding truss is free to move in y-
direction, so beams can expand and contract more readily
to relieve stress

Y High y-axis to x-axis stiffness ratio Folding Truss

Comb-Driven Folded Beam Actuator

Copyright © 2009 Regents of the University of California
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& Beam End Conditions
|” UC Berkeley

TABLE 4.1
Types of commonly used support conditions for beams and frames
Displacement Force
boundary boundary
Type of support conditi diti
z4 R s Nom: All, as specified
| T
SRR S e PR R SR S s
;E:_._ X u=0 Moment is specified
PINNED P

I'ransverse force and moment

are specificd

w =10 Horizontal force and bending

FIXED or CLAMPED

[From Reddy, Finite
Element Method]

.

=

E»-,
“UC Berkeley

o

w Common Loading & Boundary Conditions

* Displacement equations derived for various
concentrated load F or distributed load f

* Gary Fedder Ph.D. Thesis, EECS, UC Berkeley, 1994

beams with

| cantilever

| guided-end | fixed-fixed |

-

_ EL

f;.{‘..
= 4Ehw

T =

=

Y
4fx Ly

¥
F _ Bhuw
- Fy, 12 A
-*ml “m Y=4Fr. y;f}%ﬁ y:;_ﬁﬁi_f
Y] 3 o
Hﬂ M (a) Concentrated load.
ﬂ""""‘“ﬂ ) -, cantilever | guided-end }— fixed-fixed f
T = L’EI— T = % T = ;F’
¥
¥ — 3fy L} 1 4
K v=3thi |v=ido |v= Gtk
_ 3 Lt N . L
b ok ) chaamsod-ciapsd bam, (b) Distributed load.
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& Series Combinations of Springs
I"UC Berkeley
* For springs in series w/ one load

% Deflections add
% Spring constants combine like “resistors in parallel”

=2L¢

Y(L) = F/k = 2 y(L) = 2 (F/k.) = F(1/k. + 1/k.)
/

—
Compliances effectively add:

1/k = 1/k, + 1/k| -

Parallel Combinations of Springs

| UCBerkeley,
* For springs in parallel w/ one load
% Load is shared between the two springs
% Spring constant is the sum of the individual spring

constants
-
z X f;
]
i -]
Y

Y(L) = F/k = F /k, = F./k, = (F/2) (1/k.)

Copyright © 2009 Regents of the University of California
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o Folded-Flexure Suspension Variants
["UC Berkeley,

* Below: just a subset of the different versions
* All can be analyzed in a similar fashion

et e o e = . o

' - I l -~ l L . - el
ERETRRTTRATA fotei g h L et 6 g

o) m.“hu' buss & dsmnﬁmmm s fruss. (e} mﬁuhidd,m “ M&_kn"';mlm

[From Michael Judy, Ph.D. Thesis, EECS, UC Berkeley, 1994]

.

_;*; Deflection of Folded Flexures
UC Betkeley

v %
2
LA
2 X

o

B
This equivalent to

— two cantilevers of
£ length L =L/2

Composite cantilever
free ends attach here

Half of F
l absorbed in

other half 4 sets of these pairs, each of
(symmetrical)  which gets % of the total force F

Copyright © 2009 Regents of the University of California
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s Constituent Cantilever Spring Constant
I"UC Berkeley

* From our previous analysis:

F.L F.y°
X(y)=-—£—£-y2[1 ! ]-— (3L, - y)
* From which the spring constant is:

l*’ 2E1,° |7 3L, ) GEI,
F, 3El,

c L) B
* Inserting L, = L/2

3El, 24El,
kC = 3 = 3
(L/2) L

i Overall Spring Constant
[ UC Berkeley,
r -ﬁ',ﬂ'sds * Four pairs of clamped-guided beams
J % In each pair, beams bend in series
% (Assume trusses are inflexible)

* Force is shared by each pair — F;. = F/4

<——Leg — Dl'splﬂ¢men'l' of fwo legs add tb:‘;hfﬁ;
. & Hhus, springs are in Senes:
F N F ir F (
(K_: qu' P pa = ——) ("‘ + J_ )
e e e 4){k k
Sttovers— Kpal (k'eﬂu k'ef’) ( i “
e kig, kellle * =

A

B e L T T —

F TLUS.'
v | par . [E 2\, f— :.F_
x (P ed) & i
24E
= k+°+= kc: L-;
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Folded-Beam Stiffness Ratios

" Uc Berkeley,

Folded-beam r * In the x-direction:
suspension . 24E| ,
o k, = -
W . . L
‘ I * In the z-direction:
L Y Same flexure and boundary
conditions
24El
k, = E
= Shuttle
~ *In the y-direction:
[See Senturia, §9.2] ky = %
L
Folding > M
truss uch
* Thus: ﬁ = 4(£) stiffer in
Anchor K, W ) | y-direction!

.ﬁ:,i Folded-Beam Suspensions Permeate MEMS

| Uc Berkeley..

a"'

Accelerometer [ADXL-05, Alnalog Devices]

Copyright © 2009 Regents of the University of California
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Folded-Beam Suspensions Permeate MEMS
' UC Berkeley

* Below: Micro-Oven Controlled Folded-Beam Resonator

= = 4
Vi =
A N\i\\\%\“\ﬁ\\%\* =

==

\l TR 7\ |
\S“é’ds;;rjte

\ Micro- Plat\orm

A
L

i
" uc Berkeley,

Stressed Folded-Flexures
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s Clamped-Guided Beam Under Axial Load

" Uc Berkeley

* Important case for MEMS suspensions, since the thin films
comprising them are often under residual stress

* Consider small deflection case: y(x) « L

Z x
o ———
y . ¥ A
S

7 7 'f )
o |
F

Governing differential equation: (Euler Beam Equation)

4 2
TR L

dx /‘ dx \ )
Axial Load Unit impulse @ x=L

A The Euler Beam Equation
|" UC Betkeley, - — -
Thin heam Upword pressyre
Thin beam i hFCOVn"Pr‘t'C'f ]
downusz ‘\
ne
CGV : NPr fo) W(—Po—) W
Axial Stress R CoWH CoWH

* Axial stresses produce no net horizontal force: but as soon
as the beam is bent, there is a net downward force
% For equilibrium, must postulate some kind of upward load
on the beam to counteract the axial stress-derived force
% For ease of analysis, assume the beam is bent to angle ©

Dowmutid Vechced Fote = 20,WH By (8) + P, 129

UWﬂdroredw*oP: )
P ’ @i‘ e 7 (8, 516) w (RO
" =~ PwRcosB [T < 2RWP,
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[

A The Euler Beam Equation
I"UC Berkeley

O H
[Eeluu.'eruM]a IRWP, 2 26 WH — Bz ==

R
beamoao‘ d
P bl oW ® 7«7]=" Qo> %M g

h‘”‘""’l"’“’""""‘ Note: Use of the full
Using fo dfaertind beombenoling ﬁi““'””" " bend angle of © to

dw M dfur | X )
2 .- — —_— oad balance; but this
2" Ft X ET et returns us to case of

small displacements and
mkw focdl small angles

'« load establish conditions for |

EI 20 ar
1% ~ ectw\/. load acco(M‘H"é 0 Ho axtad
Sheoss ccerlwﬂou o Ho berdling ffness

[‘10 R S Lo ((rown) g (Euler Beam Equafion]
L., {enslm in tobeam s S<— a fore

Z x
? ; 7 L o
4 7 ¢

= Clamped-Guided Beam Under Axial Load

" uc Berkeley,

* Important case for MEMS suspensions, since the thin films
comprising them are often under residual stress

* Consider small deflection case: y(x) « L

1
o

Governing differential equation: (Euler Beam Equation)

4 2
LYY _s9Y _ psx-1)
" dx / dx®

Axial Load  Unit impulse @ x=L

Copyright © 2009

Regents of the University of California
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i Solving the ODE
["UC Berkeley,
* Can solve the ODE using standard methods

% Senturia, pp. 232-235: solves ODE for case of point load
on a clamped-clamped beam (which defines B.C.'s)
% For solution to the clamped-guided case: see S.

Timoshenko, Strength of Materials II: Advanced Theory

and Problems, McGraw-Hill, New York, 3rd Ed., 1955
* Result from Timoshenko:

S>0 (tension) Kk '= pPL—2tanh(pL/2} w(x=1I)

pS| F
S < 0 (compression)
= —pL+2tan(pL/2) y(x=L)
IS F
vore pe |1
where p= ET.

i Design Implications
[ UCBetkeley
* Straight flexures

% Large tensile S means flexure behaves like a tensioned
wire (for which k-1 = L/S)

% Large compressive S can lead to buckling (k-! — )

* Folded flexures oy O H poysi shakn is <, Yon
% Residual stress gy 5}'?‘%%""‘" by dls7€cls
only partially outer (2) This thon applier 4 load To fe
released 4 W boems, oo AL 8.

% Length from truss S

Tension
to shuttle's . .
centerline differs - ks Compression
by L, for inner
and outer legs —
@ Beam Shein:

Compressive
residual stress:
ofiset expand,
AL, As. . Ls
= T T 6T

v >

Copyright © 2009 Regents of the University of California
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& Effect on Spring Constant

" Uc Berkeley

* Residual compression on outer legs with same magnitude of
tension on inner legs: Shrain ih Fhe polysi

Beam Strain: &, = t&, (%) : Stress Force: S =+1Eg, (%)Wh

Shain in Hhe bagvns > Expandan of Ko Shodler=41; ]
(‘ Spring constant”becomes: e e e,
o B Sle agpins o o
L L -1 -]y es ¢
@Lw*]]/ k=t b ) ot beary

€€ k=¢[-fL+2mn(po 2) +PL_2MPL!2)T '{.:%3
L 7S] 7S]

* Remedies:
% Reduce the shoulder width L, to minimize stress in legs
% Compliance in the truss lowers the axial compression and
tension and reduces its effect on the spring constant

Copyright © 2009 Regents of the University of California



