

EE C245 - ME C218 Introduction to MEMS Design Fall 2009

Prof. Clark T.-C. Nguyen

Dept. of Electrical Engineering & Computer Sciences
University of California at Berkeley
Berkeley, CA 94720

Lecture Module 8: Microstructural Elements

EE C245: Introduction to MEMS Design

LecM 8

C. Nauye

9/28/07

UC Berkeley

Outline

- Reading: Senturia, Chpt. 9
- Lecture Topics:
 - ♦ Bending of beams
 - \$ Cantilever beam under small deflections
 - Scombining cantilevers in series and parallel
 - ♦ Folded suspensions
 - 🖔 Design implications of residual stress and stress gradients

E C245: Introduction to MEMS Design

LecM 8

C. Nguyen

9/28/07

Example:	Cantilever centrated	Beam w/ Load	α	
EE C245: Introduction to MEMS Design	LecM 8	C. Nguyen	9/28/07	12

UC Berkeley					
	Stress G	radients in	Cantileve	rs	
EE C245: Introdu	ction to MEMS Design	LecM 8	C. Nguyen	9/28/07	16

Module 8: Microstructural Elements

Solving the ODE

- * Can solve the ODE using standard methods
 - Senturia, pp. 232-235: solves ODE for case of point load on a clamped-clamped beam (which defines B.C.'s)
 - ♦ For solution to the clamped-guided case: see S.
 Timoshenko, Strength of Materials II: Advanced Theory and Problems, McGraw-Hill, New York, 3rd Ed., 1955
- Result from Timoshenko:

S > 0 (tension)
$$k^{-1} = \frac{pL - 2\tanh(pL/2)}{p|S|} = \frac{y(x=L)}{F}$$

S < 0 (compression)

$$k^{-1} = \frac{-pL + 2\tan(pL/2)}{p|S|} = \frac{y(x=L)}{F}$$

where $p = \sqrt{\frac{|S|}{EI_z}}$

<u>EE C245</u>: Introduction to MEMS Design

LecM 8

C. Nguyen

9/28/07

Design Implications UC Berkeley Straight flexures ♥ Large tensile S means flexure behaves like a tensioned wire (for which $k^{-1} = L/S$) $\$ Large compressive S can lead to buckling $(k^{-1} \rightarrow \infty)$ 1) If polysi shall is Er, then Folded flexures should expand by SLs=ErLs-♦ Residual stress Outer 2 This than applier a load to the only partially bears, who AL SLr. released to shuttle's centerline differs Compression by L. for inner Compressive and outer legs offset expand 3 Beam Strain: $\epsilon_b = \frac{\Delta L}{L} = \frac{\Delta l_s}{L} = \epsilon_F \frac{L_s}{L}$

*Residual compression on outer legs with same magnitude of tension on inner legs: Strain in the polysis Beam Strain: $\varepsilon_b = \pm \varepsilon_r \left(\frac{L_s}{L} \right)$; Stress Force: $S = \pm E\varepsilon_r \left(\frac{L_s}{L} \right) Wh$ Shain in the board of the Shadle = ω_s *Spring constant becomes: $\varepsilon_b = \frac{\Delta L}{L} = \frac{C_s L_s}{L}$ $\varepsilon_b = \frac{\Delta L}{L} = \frac{C_s L_s}{L}$ $k = 4(k_{cons}^{-1} + k_{ten}^{-1})^{-1}$ applies a local on the beams *Remedies: *Reduce the shoulder width L_s to minimize stress in legs *Compliance in the truss lowers the axial compression and tension and reduces its effect on the spring constant