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* Reading: Senturia, Chpt. 10
* Lecture Topics:
% Energy Methods
* Virtual Work
* Energy Formulations
* Tapered Beam Example
« Estimating Resonance Frequency
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" UC Berkeley

Energy Methods
b More General Geometries
UG Berkeley

* Euler-Bernoulli beam theory works well for simple geometries
* But how can we handle more complicated ones?

* Example: tapered cantilever beam

* Objective: Find an expression for displacement as a function

of location x under a point load F applied at the tip of the
free end of a cantilever with tapered width W(x)

Top view of caniilever's Wix)
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= Solution: Use Principle of Virtual Work
" UC Berkeley,

* In an energy-conserving system (i.e., elastic materials), the
energy stored in a body due to the quasi-static (i.e., slow)
action of surface and body forces is equal to the work done
by these forces ..

* Implication: if we can formulate stored energy as a function
of the deformation of a mechanical object, then we can
determine how an object responds to a force by determining
the shape the object must take in order to minimize the
difference U between the stored energy and the work done
by the forces:

U = Stored Energy - Work Done

* Key idea: we don't have to reach U = O to produce a very
useful, approximate analytical result for load-deflection

]

5 More Visual Description ...
7" UC Berkeley
Sume problem as hefre: Toke a beam § apoh, o fore:
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5 Fundamentals: Energy Density
" UC Berkeley,
* Strain energy density: [J/m3] V(- IQ ok /'004’0&) ;gmitvm
% To find work done in straining maTer'lax Shooed
. villve dstain@ posi Hon (4.9,2) Orogy A Copacion
e o\ W=| 0.de, x-axis normal stress term
il & o ’to;(e*),,eoakf shas b Fhain @ pasition (x9,2)

* i
jgﬁh?l)’:'\ (0:5( i Eé"ﬁ‘P W= L: LE_‘_:fgl_ = E E 8:;

Gerove
‘W@)j‘ ‘1)"(‘1 q:M‘me}DeﬁuWW

of Gk

* Total strain energy [J]:
% Integrate over all strains (normal and shear)

W= ‘m[% E (.L:_}.z +g," +g.” )+ %G(}f; Y A )}JV

]

Bending Energy Density

I UC Berkeley,

y’ Neutral Axis

] y(x) = transverse displacement

x of neutral axis
dx yl_>

* First, find the bending energy dW,.,q in an infinitesimal

length dV—‘W widdt,
Miend = Webx | —Eéx(yl gz
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& Energy Due to Axial Load
" UC Berkeley,
ds
S ; _-_‘__::__‘.__‘::=—T S
X —
A e W

* Strain due to axial load S contributes an energy dW,, .:.n
in length dx, since lengthening of the different element dx

(to ds) results in a strain ¢, /Bimvnfaﬂ Theorem
de (' (44)]* = 2x [/+ (%;J]‘i = h(’* é(%ﬂ
€y d;'L:X _(.(52-)2 A\(urﬂJ?m.n Evergy

(W i SExdn = 35 (%) d,,]:; Wa - J.Sg (%J

,ﬁ\ Shear Strain Energy

7 UC Berkeley

(ELY 4 d*y )
B S Y a
W oo 4G { [ ac |

Shear Modulus

* See W.C. Albert, "Vibrating Quartz Crystal Beam
Accelerometer,” Proc. ISA Int. Instrumentation Symp., May
1982, pp. 33-44
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w  Applying the Principle of Virtual Work
" UC Berkeley,
* Basic Procedure:
% Guess the form of the beam deflection under the applied
loads
% Vary the parameters in the beam deflection function in
order to minimize:

. . Assumes
Sum strain energies point load
J

\\ v /
U= 22
J I

Displacement
at point load

% Find minima by simply setting derivatives to zero

* See Senturia, pg. 244, for a general expression with
distrubuted surface loads and body forces

]

= Example: Tapered Cantilever Beam
7" UC Berkeley
* Objective: Find an expression for displacement as a function
of location x under a point load F applied at the tip of the

free end of a cantilever with tapered width W(x)
Top view of canfilever's W{x)

X .

T = W) =W (->0)
50% taper . c

A XS Adjustable

] ' parameters:
l_> X minimize U

] Y

e

A x E

2 3
* Start by guessing the solution ————— Y(X) =G, X"+ CgX
% It should satisfy the boundary conditions
% The strain energy integrals shouldn't be too tedious
* This might not matter much these days, though, since
one could just use matlab or mathematica
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5 Strain Energy And Work By F

" UC Berkeley

L{ :W‘:Jmm’ - F . J‘(‘i‘ c')

1% (ayY
mwﬂ,_gﬁj’f:(x 3| @

0 X

(Bending Energy)

W (x)h’ d*
I(x)= \ —y=2cﬂ, +6¢.x
12 dxl 2 3
X (Using our guess)
W(x)=W(l-
(x)=W{( oL )

(o

Tip Deflection
—1EWh3T(1—x)(2p +6exfde—F(c,l,” +c,L)
24 ) A e TR

&

]

n Find c; and ¢c; That Minimize U
UG Berkeley,

* Minimize U — basically, find the ¢, and c; that brings U

closest to zero (which is what it would be if we had guessed
correctly)

* The ¢, and c; that minimize U are the ones for which the
partial derivatives of U with respective to them are zero:

w_,
de,

ol
o0
de,

* Proceed:
% First, evaluate the integral to get an expression for U:

U =EWR’® {5‘7—1, Ml & L L Fle,L* +eiL.’)
16 3 |

Copyright © 2009 Regents of the University of California



EE 245: Introduction to MEMS CTN 10/19/09
Module 9: Energy Methods

A Minimize U (cont)
7 UC Berkeley,

* Evaluate the derivatives and set to zero:

- mz m&

?U:() c,—F o ¢, L,

de, 3 4 |-
EWES

W _o(3 ZEWhie,—F |L’+ e, I}

e, 8 3

* Solve the simultaneous equations to get ¢, and c;:

84 FL, 24y F
&= 3 G = 3
13 |EWh 13 | EWh

& The Virtual Work-Derived Solution

7 UC Berkeley
* And the solution:

24F Y(7 ,
) —[_ = HE)L —x}

* Solve for tip deflection and obtain the spring constant:

24F 13EWR®
HE)= (13&%[ JL k= Fib)= [603_2 J

* Compare with previous solution for constant-width cantilever
beam (using Euler theory):

_(_4F 3 > 13% smaller than
L) _( EWh? )L‘-‘ " tapered-width case
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=Y Comparison With Finite Element Simulation
" UC Berkeley

* Below: ANSYS finite element model with

L = 500 pm W, = 20 pm E = 170 GPa
h=2um W;ip = 10 pm

* Result: (from static
analysis)
%k = 0.471 pN/m
* This matches the
result from energy
minimization to 3
significant figures

A Need a Better Approximation?
UC Berkeley

* Add more terms to the polynomial

* Add other strain energy terms:
% Shear: more significant as the beam gets shorter
% Axial: more significant as deflections become larger

* Both of the above remedies make the math more complex,
so encourage the use of math software, such as
Mathematica, Matlab, or Maple

* Finite element analysis is really just energy minimization

* If this is the case, then why ever use energy minimization
analytically (i.e., by hand)?
% Analytical expressions, even approximate ones, give
insight into parameter dependencies that FEA cannot
% Can compare the importance of different terms
% Should use in tandem with FEA for design
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“UC Berkeley,

Estimating Resonance Frequency

7 UC Berkeley

% , Clamped-Clamped Beam pResonator

Resonator Beam

Sinusoidal
Excitation

* o 2 o, small amplitude

* ® = o, maximum amplitude = beam reaches its maximum
potential and kinetic energies

Voltage-
to-Force
Capacitive
Transducer

v, =V, cos[w,t] — f, =F, cos[m,t]

Sinusoidal
Forcing Function

Copyright © 2009 Regents of the University of California
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5 Estimating Resonance Frequency
7 UC Berkeley,

* Assume simple harmonic motion:

ijrm. X(t) = x,008(cx)
K M |

* Potential Energy:
1 2 1 2 2
Wit) = ke (1) =5 k" cos™ (@)
* Kinetic Energy:

K@) = ém—?(z) = %ijmz sin” ()

]

&  Estimating Resonance Frequency (cont)
UG Berkeley,

* Energy must be conserved:
% Potential Energy + Kinetic Energy = Total Energy
% Must be true at every point on the mechanical structure

Occurs at peak Occurs when the beam moves
displacement through zero displacement
N 1, - % 1
_ < — 2 2
/7 max _Ekxf} - Kmﬁx _EM&} x{:
Maximum j T I
ngenflal Stiffness Maximum Radian
nergy Kinetic Mass  Frequency

Displacement Energy

Amplitude
* Solving, we obtain for k
resonance frequency: m= I3
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A Example: ADXL-50
" UC Berkeley
* The proof mass of the ADXL-50 is many times larger than
the effective mass of its suspension beams
% Can ignore the mass of the suspension beams (which
greatly simplifies the analysis)

* Suspension Beam: L = 260 pm, h = 2.3 pm, W = 2 um

} rwians. ]
i
- l“-c

2
Fixed Gapacilor Plafies

Proof Mass

Sense Finger

Suspension Beam
in Tension

]

9 Lumped Spring-Mass Approximation
T"UC Berkeley,

* Mass is dominated by the proof mass
% 60% of mass from sense fingers
% Mass = M = 162 ng (nano-grams)
* Suspension: four tensioned beams

% Include both bending and stretching terms [A.P. Pisano,
BSAC Inertial Sensor Short Courses, 1995-1998]

L F/4
- I
Bending compliance k.-
9 P b Fi4
i

Stretching compliance k"
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" UC Berkeley

ADXL-50 Suspension Model

* Bending contribution:

~ | (L/2) L o
E7 =k +1/k)=2 - = _=42um/uN
p =Wk +1/k) [35{%*;12}} o R
* Stretching contribution:
_[ _ * _ .{ _
k, _,{/5_(%—%_1.14;;;;@{#39 s
I
S e g)
F, = Ssind = S(xiL)- ()
* Total spring constant: add bending to stretchin "
pring (sine ‘H«?avc ih qullof) I kst
k=4(k, +k,)=4(024+0.88) =4.5uN / um
P ADXL-50 Resonance Frequency

UC Berkeley
* Using a lumped mass-spring approximation:
P JE_ 1 [ 448N/m
2rYM 2 Y162x10 kg
* On the ADXL-50 Data Sheet: f, = 24 kHz

% Why the 10% difference?
% Well, it's approximate ... plus ...

cover later on ...

=26.5kH=z

% Above analysis does not include the frequency-pulling
effect of the DC bias voltage across the plate sense
fingers and stationary sense fingers .. something we'll

Copyright © 2009 Regents of the University of California
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Distributed Mechanical Structures

i

" UC Berkeley
* Vibrating structure displacement function:

ﬁ y(x,0) = ¥(x)cos(@r) X
a ,—-E

¥(x)

Maximum displacement function
(i.e., mode shape function)
Seen when velocity y(x,t) = O

* Procedure for determining resonance frequency:

% Use the static displacement of the structure as a trial
function and find the strain energy ‘W, at the point of
maximum displacement (e.g., when =0, /o, ..)

% Determine the maximum kinetic energy when the beam is
at zero displacement (e.g., when it experiences its
maximum velocity)

% Equate energies and solve for frequency

A

ks Maximum Kinetic Energy

Lk
UC Betkeley

* Displacement: Y(X,t) = y(x)cos[at]

* Velocity: V(X,t)= % = —awy(X)sin[wt]

* At times t = 1/(20), 31/(2w), ..

ﬂ y(x,t)=0 ﬁt
N =

N\ J
Y
Velocity topographical mapping

% The displacement of the structure is y(x,t) = 0
© The velocity is maximum and all of the energy in the
structure is kinetic (since ‘W=0):

V(X, 7/(n®)) = —wy(x)

Copyright © 2009 Regents of the University of California
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A Maximum Kinetic Energy (cont)
" UC Berkeley,
* At times t = 1/(20), 31/(2w), ..
> y(x,t)=0 1.
- I O N T U R N T O O N
w Velocity: V(X, ﬂ/(n(())) = —a))A/(X)
jy dK :%-dm-[v(x,t)]2
—oix}— dm = p(Wh- dx)
* Maximum kinetic energy:
T 1 2 ’ T 1 22
K =‘{[E;}Wkéxv (x,1) =£EpWh$ ¥ (x)dx
A The Raleigh-Ritz Method

7 UC Berkeley

* Equate the maximum potential and maximum kinetic energies:

L

Ko = [ PP ()5 =W,

0

* Rearranging yields for resonance frequency:

o = resonance frequency
W« = maximum potential

ﬁ w._. energy
p = density of the structural

0= |7
1 v material
d.‘gp%}} (l)dx W = beam width
o h = beam thickness
¥(x) = resonance mode shape

Copyright © 2009 Regents of the University of California

15



EE 245: Introduction to MEMS CTN 10/19/09
Module 9: Energy Methods

[}

P Example: Folded-Beam Resonator

" UC Berkeley

Folded-beam  §* * Derive an expression for the
suspension x resonance frequency of the
folded-beam structure at left.

Use Rayleigh- Rite methed.
KE mex = PE mox
Shuttle w/ Kinefic E”e'37
mass Ms KEM&xf FE_;- + EEﬁ + KEL
d’“‘“"’e ‘I‘NU beams

2
T IUTM T L (i,

Folding
""l'::ss sMVZ\/Z rusres Hwst fﬂ*’e‘jm‘e ane. He
Anchor | = thickness bean veloaky is @ fmclin
of l>cation )’

]

Get Kinetic Energies

T"UC Berkeley,
Folded-beam ¥ Vefoclly o Hhe o rr T
suspension z . . ! /
U T Maxiimiom Dirpheeted
A"plrfuh

. KEg: ’ZLA[rz”J

\/docﬁyorf#e‘hw.r /\f —\-U'=

Shuttle w/ KEt 3 'L%X\M.(.

mass M Vebcn‘ﬁ of Ho beam .I'egmeviﬁ'

= assume Ho mole shape (s te Sawe ar
Ho stdic disploewont shipe

= For segmen’r AB:

i, (31_.} —29’) 0<ysL 0)

Folding
truss w/

mass M,\2 &('31‘
Anchor | - thickness
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A
u

" UC Berkeley

Get Kinetic Energies (cont)

Folded-beam
suspension

= T

Shuttle w/

mass M;\2
h = thickness

Anchor

mass M,
" Ko * S XoWe [ ( (_%) ] dMyg
S mn/q
. X o
Foang st bun = %R0 [ (-

broeL: w2 T TPEa
S'ubeMﬂa nto (:)
Reays 2 [3(8-2(4)°]
tohich yieU; o veloci‘h,
G - 2B

2(4)

H‘lﬂﬁi"g inp He e;gore.r-ﬂwﬁu KEp:

3
KE(ag) = s X0 Mig)

]

T"UC Berkeley,

Get Kinetic Energies (cont)

Folded-beam
suspension

| Shuttle w/
| mass M,

Folding
truss w/
mass M;\2

h = thickness

Anchor

fFor Segmen"' M
Yoy I[co] *Xo [I ’ %G_‘Hz"' (‘?7)3 o

Thus:
[ {9 4(5]4

Kffco] :

beum [cn,
Let My 2 bl mess of He £ baums. !

Xsw:“[,co] t

" Mmﬂ"MCco)" :s'*‘“b
Thus:
L6,
KE TKEag) * YK iep) = 35 XowoM,

and
Kt Xew2 [FHet $Mp S M,]

Copyright © 2009 Regents of the University of California
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A Get Potential Energy & Frequency

" UC Berkeley

Folded-beam
suspension

BEimax is simphy Fho Loort dore o achieve
WG Ximum o(eﬂeon s ke

« .
Max' ék'x)(o

Thuf, uﬁnj Raley\- Ritz:
KEpmay = PEimgy ,k‘

%i‘do (’2"”:*' j’M-(" ] z "7%

Shuttle w/

mass M,
)
Folding whewe Mey: Mt M+ 35
truss w/
mass M;\2 ( Restmane Freg
Anchor | _ thickness Foded - Ream Swpma’ea( Shu'l'He)
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