EE245 Discussion 10/4/10

Thursday, September 16, 2010 5:10 PM

Bobby Schneider Office hours: 10:30-12 on Tuesdays in Cory 481

Today:
Selectivity and overetching
Etch-back
Liftoff
Anisotropic wet etching (KOH) of silicon
Electroplating

HW Tips Process flow problems - general approach Stiction equation, briefly

Selectivity

Selectivity refers to the relative etch rates of different materials or directions for an etching step. In most cases, we desire infinitely selective etching. Sometimes, this is achievable.

Example: When using HF to etch SiO₂, Si is not etched at all.

Sometimes, this is not what we get.

Example: How can we etch silicon carbide (SiC)? Photoresist won't work (it gets etched too... but faster).

Example: How can we etch silicon carbide (SiC)? Photoresist won't work (it gets etched too... but faster).

Solution: Use a hard mask other than photoresist, (which itself is patterned using photoresist).

We can use an SiO₂ hard mask.

Problem: 1.5 to 1 selectivity of SiC to SiO₂. (==> BAD)

**Even better solution: Use a nickel hard mask instead (the selectivity of SiC to nickel is higher). Unfortunately nickel is not allowed in some etching chambers because it might contaminate other peoples' projects.

Etch-back

Deposit thick PR

Use a timed O₂ plasma etch to remove some of the PR to expose the top of a structure

Lift-off

Problem: Some materials are difficult to etch without attacking the substrate. Or, we just want to pattern a material without etching.

Solution: Deposit and remove the material using liftoff instead. No etching required. Method:

- -Deposit PR first, expose (using a negative mask), soak the PR in chlorobenzene for ~5 minutes, develop.
- -Deposit the material using a highly direction deposition method (e.g. evaporation)

Alternative method:

-Use an aluminum/polysilicon bilayer structure to make a better "umbrella"

Bulk Micromachining

It is often useful to etch deep into the silicon wafer.

Example: Create a membrane with a precisely controlled thickness (use a boron etch stop).

KOH is an an. 36 Fropric ether for Si,

(III) (10°) (110)

-]: loo: 100

-]: loo: 100

| loo; Not

| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo; Not
| loo;

Electroplating (deposition method for many metals)

Place the wafer in a solution containing ions of the material to be electroplated.

One ion from the solution and one or two electrons combine to form a deposited atom.

Need a potential difference between the wafer (cathode) and an electrode placed in the solution (anode)

Need a seed layer upon which the metal can grow

Need a mold to confine the growth of the metal. (Typically, use photoresist and a dark field mask)

HW #3 tips:

Processing auestion - draw the cross section

ency is mount

HW #3 tips:

Processing question - draw the cross section

- -You don't really need to draw the photoresist while building your cross section, usually.
- -Focus on the thicknesses of the materials being deposited, and the masks used to etch.
- -Identify CF/DF masks, and whether etch steps are anisotropic or isotropic.

Stiction equation:

$$F_{stiction} = \frac{2\,A\,\gamma_{la}\cos(\theta_c)}{g}$$

1 - W ~ 77 m N/m 10 J/m

A is the area

 γ_{la} is the surface tension at the liquid air interface $\sim [N/m] = [J/m^2]$

 θ_c is the contact angle (dependent on liquid, air, solid, temperature and pressure, and also whether the liquid is receding or advancing)

g is the gap

bschneid@eecs.berkeley.edu