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Y Stress, strain, etc., for isotropic materials
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_ % Internal dissipation
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= Vertical Stress Gradients i
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* Variation of residual stress in the direction of film growth
* Can warp released structures in z-direction

Elasticity
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@ 2D and 3D Considerations
" UGBerkeloy
* Important assumption: the z

differential volume element
is in static equilibrium — no Py -
net forces or torques (i.e., 5y
rotational movements)
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% For no net torque, the X%
shear forces on
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P 2D Strain
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* In general, motion consists of
% rigid-body displacement (motion of the center of mass)
% rigid-body rotation (rotation about the center of mass)
% Deformation relative to displacement and rotation
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* Isotropic = same in all directions
* The complete stress-strain relations for an isotropic elastic
solid in 3D: (i.e., a generalized Hooke's Law)
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Isotropic Elasticity in 3D

Basically, add in off-axis strains from
normal stresses in other directions
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* Common case: very thin film coating a thin, relatively rigid

Important Case: Plane Stress

substrate (e.g., a silicon wafer)

Iy |< Plane stress region -:lEE I

Edge
region

Thin fi

* At regions more than 3 thicknesses from edges, the top
surface is stress-free - o, = 0
* Get two components of in-plane stress:

£x =(1/E)lo, V(0 +0)]
&, =(1/E)lo, ~v(0, +0)]

Edge Region of a Tensile (¢>0) Film

* Symmetry in the xy-plane — o, =

where

and where

Biaxial Modulus £ E'=

* Thus, the in-plane strain components are: ¢, = ¢,
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Important Case: Plane Stress (cont.)
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At free edge,

Net non-zero in-
in-plane force

plane force (that
we just analyzed)

Shear stresses

¥
Fl
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Discontinuity of stress
at the attached corner
— stress concentration

must be zero \
EF=0

Film must
be bent
back, here

There's no Poisson
contraction, so
the film is slightly
thicker, here

Peel forces that
can peel the film
off the surface




