

A	Dopan UC;Berkeley	t Behavi	ior Dur	ring Oxidation
	 Segregation coe combine to dete 	efficient (m) ermine dopa	and diff nt behavio	usion constant (D) or during oxidation:
	Impurity	m	D in SiO ₂	Dopant Behavior During Oxidation
	В	<0.3 (small)	Small	depl. f/Si surface, pile up in oxide
	B (oxidation w/H ₂)	<0.3 (small)	Large	depl. f/Si surface, depl. from oxide
	P, Sn, As	~10 (large)	Small	pile up in Si, very little diff. into SiO ₂
	Ga	20 (large)	Large	depl. f/Si, depl. from oxide
	e.g., wet a where H_2 is as a by-pr	oxidation s present oduct.	So lithe surf	arge that it depletes dopant @ the Si ace despite
EE	C245: Introduction to MEMS D	esign	LecM 4	C. Nguyen 8/20/09 11

Copyright @ 2011 Regents of the University of California

CTN 9/20/11

CTN 9/20/11

CTN 9/20/11

Two-S	Step Di [.]	ffusion		
 Two step diffusion procedution (ure: i.e., const ion (i.e., li e is both a al profile 1 tion or Gau er Dt prod	ant source imited sour predeposi ype (i.e., ussian) is d uct:	diffusion) ce diffusi tion and a etermined) on) by
(Dt) _{predep} » (Dt) _{drive-in} ⇔	impurity error fun	profile is c ction	omplement	ary
(Dt) _{drive-in} » (Dt) _{predep} ⇔	impurity is usually	profile is G the case)	aussian (v	vhich
EE C245: Introduction to MEMS Design	LecM 4	C. Nguyen	8/20/09	34

	essive D	iffusion	5	
 For actual processes, the one of many high tempe contributes to the final Typical overall process: Selective doping Implant → effective Drive-in/activation Other high temperative (eg., oxidation, restance) Each has their ow Then, to find the fill 	ive junction/ rature step: junction pro- ive $(Dt)_1 = ($ $n \rightarrow D_2 t_2$ ture steps eflow, depos n Dt product nal profile,	diffusion for s, each of ofile $(\Delta R_p)^2/2$ (G function P temper sition) $\rightarrow D_{2}$ it use	vrmation is which vaussian) dw,T 4 3 t ₃ , D ₄ t ₄ , .	only
(D	$(t)_{tot} = \sum_{i}$	$D_i t_i$		
in the Gaussian dist	ribution exp	ression.		
EE C245: Introduction to MEMS Design	LecM 4	C. Nguyen	8/20/09	35

$D = D_o \exp\left(-\frac{E_a}{kT}\right)$	$\left(\frac{4}{7}\right)$ (as usual, an Arr	nhenius relationship
Table 4.1 Typical Diffus	sion Coefficient Values for	a Number of Impurities.
Element	$D_0(\mathrm{cm}^2/\mathrm{sec})$	$E_{A}(eV)$
Element	$\frac{D_0(\mathrm{cm}^2/\mathrm{sec})}{10.5}$	<i>E</i> _A (eV)
Element B Al	D ₀ (cm ² /sec) 10.5 8.00	<i>E</i> _A (eV) 3.69 3.47
Element B Al Ga	$\frac{D_0(\text{cm}^2/\text{sec})}{10.5} \\ 8.00 \\ 3.60$	<i>E</i> _A (eV) 3.69 3.47 3.51
Element B Al Ga In	$\frac{D_0(\text{cm}^2/\text{sec})}{10.5} \\ 8.00 \\ 3.60 \\ 16.5$	
Element B Al Ga In P	$\frac{D_0(\text{cm}^2/\text{sec})}{10.5}$ 8.00 3.60 16.5 10.5	$E_{A}(eV)$ 3.69 3.47 3.51 3.90 3.69
Element B Al Ga In P As	$\frac{D_0(\text{cm}^2/\text{sec})}{10.5}$ 8.00 3.60 16.5 10.5 0.32	$E_{A}(eV)$ 3.69 3.47 3.51 3.90 3.69 3.56

CTN 9/20/11

Copyright @ 2011 Regents of the University of California

CTN 9/20/11

Copyright @ 2011 Regents of the University of California