

	Outlin	e	
• Reading: Senturia, Chp • Lecture Topics:	t. 9 er small defl s in series an of residual st	ections nd parallel ress and stre:	ss gradients
EE C245: Introduction to MEMS Design	LecM 8	C. Nguyen	9/28/07 2

<u>EE 245: Introduction to MEMS</u> <u>Module 8: Microstructural Elements</u>

-yper or commonly more	support conditions for be	eams and frames	
Type of support	Displacement boundary conditions	Force boundary conditions	
z + FREE x.	None	All, as specified	
Z PINNED X	u = 0 w = 0	Moment is specified	_
ROLLER (vertical)	u = 0	Transverse force and moment are specified	
z Andrew ROLLER (horizontal)	<i>w</i> = 0	Horizontal force and bending moment are specified	
	u = 0 w = 0 dw/dx = 0	None specified	[From Reddy, Finite Element Method]

The Euler Beam Equation				
$[Equilibrium] \Rightarrow 2RWP_0 = 205WH \rightarrow P_0 = \frac{05H}{R}$				
$\left[q_{0} = \frac{beam load}{unit kergk} = P_{0}W, \frac{1}{R} = \frac{d^{2}W}{dx^{2}}\right] \Longrightarrow q_{0} = \sigma_{0}WH \frac{d^{2}W}{dx^{2}}$				
beam displacement Using the differential beam bending equation: $\frac{d^2w}{dx^2} = -\frac{M}{EI} \longrightarrow \frac{d^4w}{dx^4} = \frac{q}{EI} \xrightarrow{load}{withersk}$	<u>Note</u> : Use of the full bend angle of π to establish conditions for load balance; but this returns us to case of small displacements and small angles			
LI dr.4 - 9+ 90 equiv. load accounting for the oxtal sthess contribution to the bending difference				
$\left[q_{\delta}=\sigma_{\delta}WH\frac{d^{2}\omega}{dx^{2}}\right] \Rightarrow EI\frac{d^{4}\omega}{dx^{4}}-(\sigma_{\delta}WH)\frac{d^{2}\omega}{dx^{2}}:q$	(Euler Beam Equation]			
is tension in the beam = S <- a force				
EE C245: Introduction to MEMS Design LecM 8	C. Nguyen 9/28/07 37			

