PROBLEM SET \#6

Issued: Tuesday, Oct. 30, 2012
Due (at 7 p.m.): Tuesday Nov. 20, 2012, in the EE C245 HW box near 125 Cory.

Figures PS6.1-6 show a dual-axis $x-y$ accelerometer manufactured via the following 3-mask surface micromachining process:
i) Deposit $1.0 \mu \mathrm{~m}$ of SiO_{2} on a Silicon wafer
ii) Deposit 300 nm of SiN_{3} via LPCVD
iii) Deposit 200 nm of in-situ doped polysilicon
iv) Lithographically define and etch polysilicon interconnects (anisotropic)
v) Deposit $2.0 \mu \mathrm{~m}$ of SiO_{2} (LTO)
vi) Lithographically define and then etch anchor openings in SiO_{2} (anisotropic)
vii) Deposit $3.0 \mu \mathrm{~m}$ of in-situ doped polysilicon
viii) Lithographically define and then etch the polysilicon structure (anisotropic)
ix) Etch SiO_{2} completely using an HF etch, releasing structure (isotropic)

Assume all materials are stress-free at room temperature and have the material properties listed in Table PS6.1.

Table PS6.1

Material	ρ_{m} $\mathrm{~kg} / \mathrm{m}^{3}$	E GPa	v	α_{T} $\mu \mathrm{strain} / \mathrm{K}$	σ_{0} MPa	Comment
Polysilicon	2300	150	0.2	2.8	Varies	Random Grains
Silicon Dioxide	2200	69	0.17	0.7	-300	Amorphous
Silicon Nitride	3170	270	0.27	2.3	1100	Stoichiometric

Figure PS6.1 - Perspective view of the accelerometer.

Figure PS6.2 - Top view of the accelerometer.

Figure PS6.3 - Top view of accelerometer showing only the interconnect layer.

Figure PS6.4-Zoom-in view of the x-direction interdigital comb finger structure. There are 71 fingers on each side of the proof mass.

Figure PS6.5 - Top view showing the \boldsymbol{y}-direction capacitor structure.

Figure PS6.6 - Zoom-in view of the \boldsymbol{y}-direction capacitor structure.

1. Calculate the x - and y-directed resonance frequencies of the accelerometer structure with no applied DC bias, making simplifying assumptions as necessary. Do NOT neglect the beam masses in these calculations. Assuming a quality-factor Q of 5 in both directions, draw the frequency response for the accelerometer in both the x - and y-directions.
2. Derive an expression for the capacitance between port A and B shown in Figure PS6.7 as a function of displacement x using a parallel-plate approximation. Also, calculate the overlap capacitance between these two ports at rest.
3. Derive an expression for the capacitance between port A and C shown in Figure PS6.7 as a function of displacement y using a parallel-plate approximation. Also calculate the overlap capacitance between these two ports at rest.
4. Suppose the accelerometer is now hooked up as shown in Figure PS6.7, with a DC bias $V_{\text {bias }}$ of 10 V applied to the structure.
(a) Calculate the new x - and y-directed resonance frequencies with this DC bias.
(b) If a sinusoidal force signal is applied to the structure in the x-direction with a magnitude of 1 g , what will be the magnitude and phase of the resulting output current i_{B} as a function of frequency?
(c) If a sinusoidal force signal is applied to the structure in the y-direction with a magnitude of 1 g , what will be the magnitude and phase of the resulting output current i_{C} as a function of frequency?

Figure PS6.7-Top view of the accelerometer with circuit connections for problem 4.

