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Q Measurement Using Resonators

[Y.-W. Lin, Nguyen, JSSC Dec. 04]
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Folded-Beam Comb-Drive Resonator

• Issue w/ Wine-Glass Resonator: non-standard fab process
• Solution: use a folded-beam comb-drive resonator
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Comb-Drive Resonator in Action

• Below: fully integrated micromechanical resonator oscillator 
using a MEMS-last integration approach
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Folded-Beam Comb-Drive Resonator

• Issue w/ Wine-Glass Resonator: non-standard fab process
• Solution: use a folded-beam comb-drive resonator
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Measurement of Young’s Modulus

• Use micromechanical resonators
Resonance frequency depends on E
For a folded-beam resonator: 213)(4
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• Extract E from 
measured frequency fo

•Measure fo for several 
resonators with varying 
dimensions

• Use multiple data points 
to remove uncertainty 
in some parameters
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Anisotropic Materials
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Elastic Constants in Crystalline Materials

• Get different elastic constants in different crystallographic 
directions → 81 of them in all

Cubic symmetries make 60 of these terms zero, leaving 
21 of them remaining that need be accounted for

• Thus, describe stress-strain relations using a 6x6 matrix
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Stiffness Coefficients of Silicon

• Due to symmetry, only a few of the 21 coefficients are 
non-zero

•With cubic symmetry, silicon has only 3 independent 
components, and its stiffness matrix can be written as:
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where
C11 = 165.7 GPa
C12 = 63.9 GPa
C44 = 79.6 GPa
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Young’s Modulus in the (001) Plane
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Poisson Ratio in (001) Plane
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Anisotropic Design Implications

• Young’s modulus and Poisson ratio 
variations in anisotropic materials 
can pose problems in the design 
of certain structures

• E.g., disk or ring resonators, 
which rely on isotropic properties 
in the radial directions

Okay to ignore variation in RF 
resonators, although some Q 
hit is probably being taken

• E.g., ring vibratory rate 
gyroscopes

Mode matching is required, 
where frequencies along 
different axes of a ring must 
be the same
Not okay to ignore anisotropic 
variations, here Ring Gyroscope
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