

EE C245 - ME C218 Introduction to MEMS Design Fall 2012

Prof. Clark T.-C. Nguyen

Dept. of Electrical Engineering & Computer Sciences
University of California at Berkeley
Berkeley, CA 94720

Lecture Module 3: Oxidation & Film Deposition

E C245: Introduction to MEMS Design

.ecM

C. Nguyer

8/20/09

Lecture Outline

- Reading: Senturia, Chpt. 3; Jaeger, Chpt. 2, 3, 6
 - \$ Example MEMS fabrication processes
 - **♥** Oxidation

UC Berkeley

- Film Deposition
 - Evaporation
 - ◆ Sputter deposition
 - Chemical vapor deposition (CVD)
 - ◆ Plasma enhanced chemical vapor deposition (PECVD)
 - **←** Epitaxy
 - Atomic layer deposition (ALD)
 - Electroplating

E C245: Introduction to MEMS Design

LecM

C. Nguyen

8/20/09

UC Berkeley

For shorter times:

$$\left[(t+\tau) << \frac{A^2}{4B} \right] \Rightarrow X_{OX}(t) = \left(\frac{B}{A} \right) (t+\tau) \Rightarrow \text{oxide growth limited by reaction at the Si-SiO}_2 \text{ interface}$$

Taylor expansion (first term after 1's cancel)

 $^{
u}$ linear growth rate constant

For long oxidation times: oxide growth diffusion-limited

$$\left[\left(t + \tau \right) >> \frac{A^2}{4B} \right] \Rightarrow X_{OX} \left(t \right) = \sqrt{B(t + \tau)} \approx \sqrt{Bt}$$

$$t >> \tau$$
Parabolic rate constant

<u>E C245</u>: Introduction to MEMS Desig

LecM

C. Nguyen

8/20/09

15

Oxidation Rate Constants

UCBerkeley

Table 6–2 Rate constants describing (111) silicon oxidation kinetics at 1 Atm total pressure. For the corresponding values for (100) silicon, all C_2 values should be divided by 1.68.

Ambient	<i>8</i>	B/A
Dry O ₂	$C_1 = 7.72 \times 10^2 \mathrm{\mu m^2 hr^{-1}}$	$C_2 = 6.23 \times 10^6 \mathrm{\mu m}\mathrm{hr}^{-1}$
	$E_{\rm I}=1.23~{\rm eV}$	$E_2 = 2.0 \mathrm{eV}$
Wet O ₂	$C_1 = 2.14 \times 10^2 \mathrm{\mu m^2 hr^{-1}}$	$C_2 = 8.95 \times 10^7 \mathrm{\mu m}\mathrm{hr}^{-1}$
	$E_1 = 0.71 \text{ eV}$	$E_2 = 2.05 \text{ eV}$
H₂O	$C_1 = 3.86 \times 10^2 \mu\text{m}^2 \text{hr}^{-1}$	$C_2 = 1.63 \times 10^8 \mathrm{\mu m hr^{-1}}$
	$E_1 = 0.78 \text{ eV}$	$E_2 = 2.05 \text{ eV}$

 Above theory is great ... but usually, the equations are not used in practice, since measured data is available
 Rather, oxidation growth charts are used

E C245: Introduction to MEMS Design

LecM 3

C. Nguyen

/09

16

Factors Affecting Oxidation

UC Berkeley

- In summary, oxide thickness is dependent upon:
 - 1. Time of oxidation
 - 2. Temperature of oxidation
 - 3. Partial pressure of oxidizing species ($\propto N_c$)
- Also dependent on:
 - 4. Reactant type:

Dry O₂

Water vapor ⇒ faster oxidation, since water has a higher solubility (i.e., D) in SiO₂ than O₂

- 5. Crystal orientation:
 - <111> ← faster, because there are more bonds available at the Si-surface
 - <100> ← fewer interface traps; smaller # of unsatisfied Si-bonds at the Si-SiO₂ interface

C245: Introduction to MEMS Design

LecM

C. Nguyen

8/20/09

19

Factors Affecting Oxidation

UCBerkeley

- 6. Impurity doping:
 - P: increases linear rate const.
 - no affect on parabolic rate constant
 - faster initial growth \rightarrow surface reaction rate limited
 - B: no effect on linear rate const.
 - increases parabolic rate const.
 - faster growth over an initial oxide \rightarrow diffusion faster

<u>EE C245</u>: Introduction to MEMS Design

LecM

C. Nguyen

0/09

Thin Film Deposition

- Methods for film deposition:
 - **♥** Evaporation
 - ♦ Sputter deposition
 - ♦ Chemical vapor deposition (CVD)
 - ♦ Plasma enhanced chemical vapor deposition (PECVD)
 - **⇔** Epitaxy
 - **♦** Electroplating
 - ♦ Atomic layer deposition (ALD)

Evaporation:

- Heat a metal (Al, Au) to the point of vaporization
- Evaporate to form a thin film covering the surface of the Si wafer
- Done under vacuum for better control of film composition

EE C245: Introduction to MEMS Design

LecM :

C. Nguyen

22

Sputter Deposition Process

UC Berkeley

Step-by-step procedure:

1. Pump down to vacuum

$$(\sim 100 \text{ Pa}) \rightarrow 1 \text{ Pa} = 9.8 \times 10^{-6} \text{ atm} \left(\frac{760 \text{ Torr}}{\text{atm}}\right) = 0.0075012 \text{ Torr}$$
7.5 mTorr

- 2. Flow gas (e.g., Ar)
- 3. Fire up plasma (create Ar+ ions) \rightarrow apply dc-bias (or RF for non-conductive targets)
- 4. Ar+ ions bombard target (dislodge atoms)
- 5. Atoms make their way to the wafer in a more random fashion, since at this higher pressure, λ ~60 μm for a 4Å particle; plus, the target is much bigger
- Result: better step coverage!

EE C245: Introduction to MEMS Design

LecM 3

C. Nguyen

09

Problems With Sputtering

UC Berkeley

- 1. Get some Ar in the film
- 2. Substrate can heat up
 - □ up to ~350°C, causing nonuniformity across the wafer
 - but it still is more uniform than evaporation!
- 3. Stress can be controlled by changing parameters (e.g., flow rate, plasma power) from pass to pass, but repeatability is an issue

Solution: use Chemical Vapor Deposition (CVD)

<u> C245</u>: Introduction to MEMS Design

UC Berkeley

LecM :

C. Nguye

8/20/09

27

Chemical Vapor Deposition (CVD)

• Even better conformity than sputtering

- Form thin films on the surface of the substrate by thermal decomposition and/or reaction of gaseous compounds
 - besired material is deposited directly from the gas phase onto the surface of the substrate
 - $\$ Can be performed at pressures for which λ (i.e., the mean free path) for gas molecules is small
 - This, combined with relatively high temperature leads to

EE C245: Introduction to MEMS Design

LecM 3

C. Nguyen

