caught in the contact otherwise can block further reaction if by-products get | The Diffusion Coefficient | | | |--|---|------------------------------| | $= D_o \exp\left(-\frac{E}{kT}\right)$ | $\left(rac{A}{T} ight)$ (as usual, an Arr | rhenius relationship | | No. 4.1 Tunical Diff. | sion Coefficient Values for | Number of Leaves | | Element | $\frac{D_0(\text{cm}^2/\text{sec})}{D_0(\text{cm}^2/\text{sec})}$ | | | Element | $D_0(\text{cm}^2/\text{sec})$ | E _A (eV) | | Element
B | D ₀ (cm ² /sec) | E _A (eV) 3.69 | | Element | $D_0(\text{cm}^2/\text{sec})$ | 3.69
3.47 | | Element
B
Al | D ₀ (cm ² /sec)
10.5
8.00 | E _A (eV) 3.69 | | Element
B
Al
Ga | D ₀ (cm ² /sec) 10.5 8.00 3.60 | 3.69
3.47
3.51 | | Element B Al Ga In | D ₀ (cm ² /sec) 10.5 8.00 3.60 16.5 | 3.69
3.47
3.51
3.90 |