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A Study on Failure Prediction in a Plasma Reactor
Edward A. Rietman,Member, IEEE,and Milton Beachy

Abstract—We use several approaches to demonstrate that
neural networks can detect precursors to failure. That is, they
can detect subtle changes in the process signals. In some cases
these subtle changes are early warnings that a subsystem failure
is imminent. The results on detection of precursors and faults
with various types of time-delay neural networks are discussed.
We also measure the noise inherent in our database and place
bounds on neural network prediction in the presence of noise. We
observe that the noise level can be as high as 40% for detection
of failures and can be at 30% to still detect precursors to failure.
We note that although self-organizing networks for classification
of faults seems like a good idea, in fact they do not perform well
in the presence of noise. Lastly, we show that neural networks
can induce, or self-build, Markov models from process data and
these models can be used to predict system state to a significant
distance in the future (e.g., 100 wafers).

Index Terms—Failure prediction, neural networks, plasma re-
actors, time series analysis

I. INTRODUCTION

T HE ABILITY to flag and correctly identify subsys-
tem failures within semiconductor processing equipment

could have a significant impact on throughput. For exam-
ple, consider the scenario, a plasma reactor’s own internal
diagnostic flags a pressure problem and the reactor is shut-
down. Since the machine flagged the fault as a pressure
problem, the maintenance technicians will investigate the
relevant subsystems, maybe change a gasket or O-ring and
then bring the machine up for production. Two hours later,
the system is down again for an rf-electrode error. Now
the technicians find the actual problem is a loose wire in
the matching network. In the first case, the facility was
brought down for a pressure problem. In fact, the rf-problem
manifested itself as a pressure problem. By monitoring many
in situ process signals and signatures, we could have flagged
the correct subsystem fault thus improving throughput in the
entire facility by eliminating down-time for trouble shooting.

We would like to be able to not only correctly identify
causes of failure in processing equipment, but we would also
like to predict, as far in advance as possible, that a specific
type of failure event will occur, and we would like to have
high confidence on this prediction. Our goal was to carry
out feasibility studies for this supposition. In order to test
these ideas, we used data from one plasma reactor in our
Orlando factory. In this paper we report on several approaches
to attacking this problem. We used a neural network to look
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at summary data. We also used neural networks to examine
huge multidimensional time-series of process signals, and we
discuss the limits on the ability of neural networks to operate
on time-series with additive noise. The next part of the paper
discusses the plasma reactor and the data samples. This is
followed by a discussion of some theoretical issues involved
in the modeling. The core of the paper discusses the results,
which is followed by a discussion and conclusions section. Our
conclusion, briefly, is that the prediction is possible even in the
presence of 30% noise. This prediction can be up-to dozens
of wafers in the future depending on the type of data used.

II. L ITERATURE SURVEY

The most common failure diagnosis system consists of
establishing a upper and lower limit for some monitored signal.
If the signal exceeds these bounds it is said to be a fault. The
vast majority of the literature on the subject focuses on fault
identification not fault prediction. A sampling of the literature
includes Markov models (cf. [1]–[3]), and neural networks
(cf. [4]–[7]).

Isermann [8] wrote an excellent review article on fault
detection based on modeling and system estimation. The
basic idea is that if we have a good model of the process
we can compare current process signatures and outputs with
those from the model. If we detect values above or below
some threshold this could indicate that a fault is imminent.
The problem is that often we do not have any models let
alone a good model. So, one attempts to induce a model
using time-series analysis. The classical approach is to build
autoregressive (AR), moving average (MA) and variations,
such as ARMA (cf. [9]). Often associated with the ARMA
approach is the cumulative sum (CUSUM) of the residuals
method to identify faults (cf. [10]).

Usually, these models are inadequate because the real-
systems generate multidimensional cross-correlated signals. In
order to circumvent these problems, the usual approach is to
resort to control charts, in what is known as, statistical quality
control (cf. Duncan [11] and Montgomery [12]). Here the
problem is that control of the process and fault identification
area posterioriand the end result is compared with the target
specifications and the failure event has already occurred. In a
manufacturing environment, that may mean that low quality
product has already been manufactured.

With respect to plasma reactors, for fault diagnosis, there
are three key papers: May and Spanos [13], Bakeret al.
[14], and Kim and May [15]. The May and Spanos paper
discusses monitoring various process signatures in real-time
and incorporating these with equipment maintenance history
data and in-line metrology measurements of the produced
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wafer. These three pieces of information are incorporated into
probabilistic models, similar to [16], to deduce the type of
failure event. Although the model is capable of operating
without the metrology data, we suspect in that case the quality
of the prediction would be degraded.

In a very similar and very innovative experiment, Kim
and May [15] assembled neural network modules for the on-
line diagnosis and in-line metrology. The maintenance module
consisted of a neural network to compute the parameters for
a Weibull distribution representing the cumulative distribution
of failures. Using the statistic they report very good results
at failure identification in real-time. The difficulty with failure
identification in a plasma reactor is the fact that many of the
process signatures are strongly correlated by direct mechanical
or electrical coupling. For example, if there is a sudden
vacuum failure, causing the pressure to increase rapidly, the
plasma will be quenched. This will cause a failure in the dc
bias, and reflected rf power. The applied rf power will try to
compensate. All these events will happen, more or less, simul-
taneously. In this example, if we could have examined precur-
sors to failure in an MFC we would have diagnosed the correct
failure and prevented the self-shutdown of the plasma reactor.

The paper by Bakeret al. [14] uses a different approach.
Here, the authors describe a time-delay neural network to
model the process dynamics with the goal of identifying
process signals that are greater than some preset threshold.
Their results indicate that the neural network is able to detect
errors. They demonstrate the ability of time-delay neural
networks (cf. [17]) to capture the dynamics of the process from
process signatures. Of more significance, they demonstrate that
small fluctuations in the process signals may be precursors to
process faults. They also suggest that the neural net method
may be superior to conventional ARMA time-series models
because the neural network removes auto-correlations and
cross-correlations from the inputs. One criticism of their work
is that the sampling interval for their data collection was 50
Hz. So their prediction ahead, up to ten time units, looses
some of it’s significance. As does their observation that small
fluctuations are precursors to process faults. Significant events
do not occur that quickly in the plasma reactor. Although
the faults observed by Bakeret al. were real, one could still
question the time-scale for precursor events. That is, how soon
can we observe precursors? The question remains, are there
fluctuations that act as precursors to faults and can neural
networks detect these small changes? These questions are the
primary focus of this paper.

III. REACTOR, PROCESS, ANDDATABASES

The plasma reactor used in our study was a Drytek Quad
Reactor (Drytek was acquired by Lam Research). The facility
is a cluster tool with four plasma etch chambers. Although
we collected data for all four chambers we focus our study
on chamber 1. The process was an etch process involved in
defining the location of the transistors on silicon wafers and
is a three step process, involving different etch conditions.
During the processing of wafers, several machine signatures
are monitored in 5-s time intervals. The monitored signals

TABLE I
MEAN TIME BETWEEN FAILURES

include: pressure, flow rate of four gases, dc bias, rf applied,
and rf reflected. These signatures are stored in a buffer, along
with a time stamp (relative to start of that step). At the end of
the etch process the data in the buffer are written to an ASCII
file, via the SECS interface, to a UNIX host computer. When
this occurs there is a UNIX time stamp associated with the
file. The file name has associated with it a lot number and slot
number. The file contains the concatenation of the data for the
three etch steps. Additional data from these time streams were
written to an SQL database as a statistical summary of the
time-series. The mean value and standard deviation of each of
the process/machine signatures was recorded in a table along
with a time stamp for when this occurred.

Our studies have been carried out over the last year and
data were collected off the production databases as needed.
We collected maintenance data from January 1, 1992 to April
1, 1995 and these data were used in the “hard fault” counting.
A second study involved counting “soft faults” from the SQL
summary database. These data were from November 1, 1995
to March 31, 1996 and can be assembled into a sequential
time series representing the state of the plasma reactor for
each step for each wafer.

A third study involved data collected from May 1, 1997
to July 31, 1997. For this time period, we have complete
time-stream (every 5 s during etch). These data were also
assembled into a large sequential time-stream representing the
entire activity of the reactor. In each case the collected data
represent fluctuations around the set point. In as much as these
are the data available in real-time on the plasma reactor the
question arises, how reasonableare these data for modeling?
Can we expect to observe indicators prior to a subsystem
failure? May and Spanos [13] consider a simple example of
the mass flow through a pipe. If represents the flow into
the pipe and the flow out of the pipe, by conservation of
mass . If the flows into and out of the pipe are
monitored, a violation of this conservation law indicates either
a leak or a sensor failure. So, by analogy of the pipe system
with the mass flow controller (MFC) of a plasma reactor,
by monitoring fluctuations about the set point of the MFC
we may determine if a failure has occurred or if a failure is
imminent. By extension we might be able to determine failures
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TABLE II
PEARSON CORRELATION MATRIX

Fig. 1. Scatter plot of dc bias and pressure. The two variables are strongly
correlated (0.694) but, the plot would be of little value for predictive modeling.

in the impedance matching network or in the pressure system
by monitoring rf-applied, rf-reflected, dc-bias, and pressure,
respectively.

Using these sources of data, we define “soft faults” as those
in which the operator can quickly surmise the situation and
make amends. An example of this would be a temporary
malfunction in a load-lock chamber door resulting in the
system not pumping down to base pressure. Faults of this
type would be found in the time-stream data but, not in the
maintenance database, since no repair technician was called.
When the maintenance technician is called, something more
significant needs attention and these system faults we classify
as “hard faults.” It is important to realize that the number of
soft faults could be an order of magnitude more frequent than
hard faults and “hard faults” would occur in the time-stream
database, but not necessarily in the maintenance database.

IV. SIMPLE COUNTING MODELS

Simple frequency models can be computed from counting
failure events. We do not have a measure of the actual
distributions. However, the number of observations are so large
(>140 000, processing steps or 46 000 wafers) that they suggest

(a)

(b)

Fig. 2. (a) Plot of autocorrelation function for pressure and (b) plot of partial
autocorrelation function for pressure.

a degree of reliability based on the law of large numbers (cf.
Shiryaev [18]), but we should also add the caveat that some
of the failure events could also be classified as rare events.
For example, the results suggest a vacuum pump failure once
every 40 weeks and a pressure failure every 21 000 wafers.
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(a) (b)

Fig. 3. (a) Histogram for dc-bias and (b) histogram for pressure.

From the maintenance database, the types of errors or faults
that took the facility down for repair were lumped together to
reduce the number of types of faults. This provided us with a
gross or high-level view of the problems with the facility. The
classifications were as follows. Faults involving the transport
arm, the loader and the cassette chamber door not closing
were classified as “transport” errors. All matching network
problems, applied RF, reflected RF, and dc-bias problems were
classified as “rf-dc” errors. Where the word pressure occurred
we classified those errors as “pressure.” Of course, the pressure
problem may have been in a reaction chamber, the cassette
chamber, or somewhere else. Leaky gaskets and O-rings were
also classified as “pressure.” Specific slot valve problems were
classified as “slot valve.” Where stated particle problems were
classified as “particles.” Water flow errors, electrode cooling
problems, and chiller problems were classified as “water
flow” errors. Specific software and computer related problems
were classified as “software” and vacuum pump errors were
classified as “pump” errors.

In three-and-one-half years, there was a total of 231 faults
reported by the staff and entered in the maintenance databases.
Transport faults are the major cause for system malfunction.
This, of course is reasonable, being a mechanical system. This
suggests that these systems are not as robust as we would like.
About 24% of the faults were related to transport. Another 40%
of the faults were attributed to matching network and pressure,
with each of them accounting for 20%. In conversations with
the engineering staff, the major problems that come to mind
are software and pump-related. Yet in the three-and-one-half
years of recorded hard faults, only four were due to software
and four due to vacuum pumps.

The mean time between failures (MTBF), for specific types
of events, were obtained from simply dividing the number
months by the number of events. Table I presents our results
on MTBF based on the maintenance databases. From this table,
we can expect one failure event per week. (This reactor is over
10 yr old and still in production for noncritical etch processes.)

A second counting model was built with the data from
our time-series summary statistics consists of mean values
and standard deviation for each of the process signatures,
for each process step of each wafer. (Recall, three process
steps per wafer.) Since there are accurate time stamps in
these data, it is possible to align the statistical summaries
sequentially in time-series consisting of >140 000 values. The
period of study was from November 1, 1995 to March 31,
1996. Unfortunately this time period did not overlap with data
from the maintenance database. Failure events that deviated
by 4 or more standard deviations from the mean, for a process
variable, were classified as failure events. Based on these
observations failures will occur every 9000 wafers. With a
mean time between failures of 9000 wafers we can use the
Poisson distribution to compute the probability of failure after
processing n wafers. The cumulative distribution function is
given by

So, if wafers that have already been processed, the
probability of a failure now is about 0.4.

V. AR MODELS

Prior to attempting the neural network modeling we did a
Pearson cross-correlation study and classical AR modeling.
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Table II is shows the cross correlations. As can be expected
there is a strong correlation (0.694) between the rf-applied and
the dc-bias. Also there is a strong correlation (0.53) between
one of the MFC’s and the dc-bias. However, strong these may
be, there is little predictive capability, as shown in Fig. 1, for
scatter plot of dc-bias and rf-applied. The cause of this high
correlation, but low predictability, as shown in the AR models,
is likely do to the fact that the actual subsystems, (e.g., applied
rf and dc-bias) are electrically related. A similar observation
can be made about other pairs of variables. If the pressure
suddenly increases due to a vacuum leak, the rf will show a
significant variation.

A typical AR model involves autocorrelation. Consider
observations of a discrete time series. We can form

pairs of observations of the type
. The correlation coefficient can be written by

regarding the first observation in each pair as one variable
and the second observation as another variable. We can write
the autocorrelation function (ACF) as

Cov

Var Var

where Cov is the covariance and Var is the variance between
two samples in time. The partial autocorrelation function
(PACF) is given by

Cov

Var Var

where

and are the mean squared linear regression
coefficients obtained by minimizing the expectation

. More details on the ACF and PACF are given by Wei [9].
Graphical plots of these two functions are shown in Fig. 2 for
pressure. Notice that there are oscillations in the ACF plot.
Oscillations indicate that the correlation is oscillating about
the mean, just as the signal itself does. At further distances
the correlations drop off to near zero. Similar plots were
generated for the other variables to confirm that the process is
an AR(30) process. Further modeling with ARMA variations
is unwarranted since the system of interest is multidimensional
and cross-correlated (cf. Wei [9]).

Lastly, it is known that AR(p) processes are Markov models
or Markov state machines (cf. [19], [10], [20]). This is the
cause for the high correlations between the variables. If we
know the current state of the machine we can predict the
next state with high confidence. But that has little predictive
capability for predicting subsystem faults. Further, because of
noise in the data our prediction of the next state may be in
error. In the next section, we show that neural networks can
be used to build Markov models from the data.

(a)

(b)

Fig. 4. (a) Prediction and target for pressure. This shows the Markov model
induced from the database by training the neural network and (b) similar to
Fig. 4(a), but includes an actual pressure failure event.

VI. NEURAL NETWORK MODEL

BASED ON FULL-TIME STREAMS

Neural networks are a nonlinear mapping technique, claimed
to be modeled after the biological neural networks. The mathe-
matical foundations go back to the turn of the twentieth century
and focus on a conjecture by Hilbert [21]. He conjectured that
it would not be possible to solve the following seventh-degree
polynomial:

with continuous functions of only two variables. Kolmogorov
[22] refuted Hilbert’s conjecture and showed that it is pos-
sible to represent continuous functions of many variables by
superpositions of continuous functions of one variable, which
is of the same form as neural networks. The output of a neural
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network is given by

This equation states that theth element of the input vector
is multiplied by the connection matrix . This product

is then the argument for a hyperbolic tangent function which
results in another vector. This resulting vector is multiplied
by another connection matrix . The subscript spans the
input space. The subscriptspans the space of hidden nodes
and the subscript spans the output space, in our case .
The connection matrices are found by gradient search of the
error space with respect to the matrices. The cost function for
the minimization of the output response error is given by

The first term represents the r.m.s error between the target,
and the response. The second term is a constraint that

minimizes the magnitude of the connection weights. If
(called the regularization coefficient) is large, it will force the
weights to take on small magnitude values. This can cause
the output response to be small. For example, if the weights
are all small numbers then the product of these small numbers
times the output from the hyperbolic tangent will also be a
small number. Summing these small numbers over the span of
the hidden unit space will result in a small number. Given this
weight constraint, the cost function will try to minimize the
error and force this error to the best optimal between all the
training examples. The effect is to strongly bias the network.
We make use of this fact later in an example. Details of neural
networks can be found in [23] and [24], and details of learning
with constraints can be found in [25]. In the interest of being
brief, we focus on pressure or dc-bias for our examples of
the modeling. Fig. 3 shows the histograms for both of these
variables. Noise in the data results in the dc-bias appearing as
a bimodal distribution and noise causes the pressure histogram
to appear as a tetramodal distribution. Based on the recipe, the
pressure should be bimodal and the dc bias trimodal. This is
an indicator that the desired modeling will be difficult.

Time segments of all the process signatures (e.g., flow rate,
pressure, rf, etc.) will be used as inputs to the neural network
and pressure will be the output. The first model was based on
using the 5 s interval time-streams from the plasma reactor.
The input was a sliding window of 25 time samples (about
one full wafer) for each of the process signatures and the
output was pressure n time units in the future. The input was
changed by sliding the window one time unit in the future. The
neural network was often trained for 15 000 samples and tested
on 30 000 samples. But the actual data file, for training and
testing, consisted of over 60 000 samples. The total number
of inputs was 226. This is computed from 25 time samples
of nine process signatures (four gases, rf applied, rf reflected,
pressure, dc bias, “time”) and one input bias. The “time” input
was the total number of seconds since the start of the etch. The
network had 60 hyperbolic tangent nodes in one hidden layer

(a)

(b)

(c)

Fig. 5. (a) The full neural network learning curve, (b) expanded region of
the learning curve showing two failure events, and (c) actual pressure data
showing the same failures as detected in (b).

and one linear output node. Thus the network was a 226-60-1
architecture with 13 620 connections or adjustable parameters
in the two connection matrices. Although this may seem like a
large number of connections, given that there were a far more
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(a)

(b)

(c)

Fig. 6. (a) Pressure prediction one wafer in the future, (b) pressure prediction 12 wafers in the future, and (c) pressure prediction 24 wafers in the future.
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training samples and that weight minimization was used, there
was no over training observed. A prediction of five time units
is equivalent to predicting 25 s, or one wafer in the future, this
resulted in a pressure prediction error of 44 mtorr. A prediction
of ten time units, two wafers, resulted in a prediction error of
57 mtorr and 100 time units, 20 wafers, a prediction of almost
an entire cassette into the future, gave a prediction error of 63
mtorr. For comparison the standard deviation of the pressure
(across the three steps) is 64 mtorr.

Fig. 4(a) shows the prediction and target for pressure. Also
included on this figure is the clock signal to show the start of
each step for each wafer. Fig. 4(b) shows the same type of plot
but includes an actual pressure fault. In both of these figures
the prediction was only one time unit in the future or 5 s.
Furthermore, in these figures, the training was not stopped. So
this shows the ability of the neural network to adapt to changes
in the actual stream of process signals and to detect process
faults. But, alas the prediction is not very far in the future.
So the fault was not anticipated by the neural network. This
can also be seen in the learning curve (i.e., r.m.s error versus
training iterations). If the adaptive ability (i.e., the learning) is
not disabled and the regularization coefficient is not too small
the network will quickly converge to an r.m.s error of about
1.0. When there is an actual fault in the pressure this shows
up in the learning curve as a large positive or negative error.
Fig. 5(a) shows the entire learning curve and Fig. 5(b) shows
an expanded segment of the learning curve. The comparable
region of the actual pressure data is shown in Fig. 5(c) between
46 000–49 000 time units. An actual pressure failure occurred
between 48 100–48 200. The neural network was able to detect
this fault. It should also be noted that, estimating graphically,
from Fig. 5(c), the noise spikes are almost 40% of the signal
intensity. This is an issue we will revisit in a later section.

VII. N ONTIME DELAY NEURAL NETWORK

MODEL BASED ON STATISTICAL SUMMARY DATA

Building a model from the statistical summary data has the
advantage that the mean and standard deviation will have less
noise than the raw data. The statistical summary will thus
act as a filtering tool prior to processing. This model was
based on statistical summary data for the process signatures
for 3000 wafers processed in sequence. At the end of each etch
step, in the three step process, the mean value and standard
deviation of the observed signals are written to a data file.
So one wafer of data would consist of end-time (time called
by the endpoint detector) total-time (included any over etch
time), step number, mean, and standard deviation of four gases,
rf applied, rf reflected, pressure, and dc bias. These eighteen
numbers were the inputs along with etch time, a recurrent
connection from the output and network bias giving a total
of 21 inputs. The hidden layer consisted of five hyperbolic
tangent units. The following experiments were done with a
window of one wafer. The network had a 21-5-1 architecture
with 110 connections. The input was not a sliding window
with time delay, but rather summary data for individual steps
followed by the next step of data.

Fig. 7. Error curve showing prediction distance.

The above neural network prediction of pressure, for one,
12, and 24 wafers ahead is shown in Fig. 6(a)–(c). Fig. 7
shows prediction error up to 96 wafers into the future. The
prediction is smoothly degraded till about 80 wafers where
the error saturates at 51 mtorr. For comparison, the time delay
network that used the entire time stream of data, not the
summary statistics, had a prediction good to within 63 mtorr, at
20 wafers, and the actual pressure had a standard deviation of
64 mtorr. A reasonable speculation is that the neural network
is inducing a Markov model from the time series data. Another
possibility is that the neural network is building an associative
memory of the vectors of wafer data.

So the prediction is not really too bad. It is unreasonable
to predict this far into the future unless the neural network is
inducing a Markov model from the time series data. Consider
the following, we have a plasma tool that is always used for
the same etch process and there are three steps in the process.
Than if the current state of the tool is step 2 we can predict
with high confidence that the next step will be step 3, the next
step after that will be step 1, followed by step 2 again, etc.
But, if there is a failure at one of these steps our prediction,
based on the current step, will have a probability less than 1.
However, not knowing in which step the failures will occur,
our first guess would be that there will be no failure and so our
prediction will still have a high confidence, albeit less than 1
probability. Thus, if we know the current state we can predict
future states with high confidence; a simple Markov chain.

Markov chains can also be constructed that use a time
segment of past information or a sliding window of state
information [32]. A generalized Markov chain assumes a
particular state is dependent on onlyprevious states. In this
case it is necessary that, the length of the entire chain, be

. So a time series may be viewed as a generalized
Markov chain.

VIII. T IME DELAY NEURAL NETWORK MODEL

BASED ON STATISTICAL SUMMARY DATA

The study with surrogate data showed that neural networks
can be used to observe small fluctuations if the data stream
is not too noisy. For the current experiment we conjectured
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(a) (b)

(c) (d)

Fig. 8. (a) Mean value of pressure between 5500 and 5900 samples. A failure can be seen but no precursors to the failure are seen in the mean value
data and (b) standard deviation of pressure for same time segment. Here precursors are seen at about 5700 and the failure at 5775. The precursors thus
show up at about 12 wafers prior to the actual failure event. (c) Segment of neural network learning curve showing the detection of the precursors shown
in (b) and (d) target and response curve for the same neural network predicting pressure.

that a time delay neural network, operating on the statistical
summary data might be able to observe precursors if the
neural network input consisted of a time delay segment of
data and only one process signal. Initially we selected to
examine the standard deviation time streams. We surmised
that fluctuations in these signatures would be more indicative
of actual precursors to failure and that it may be possible to
disregard the noise associated with the full set of inputs, by
examining single process signatures.

A time delay neural network of five delay units, one current
time unit, one recurrent unit from the output, and one bias
unit were the inputs. The network had one hidden layer of
five hyperbolic tangent units and one linear output unit. So
the network with (8-5-1) architecture had 45 connections.

Fig. 8(a) shows the time stream for pressure. The data in
this figure are the mean value of pressure at each of the
processing steps for the three step process. There is a pressure
failure clearly seen at 5770. Fig. 8(b) shows the corresponding
standard deviation time stream. The failure at 5770 is seen
as well as precursors starting at 5710 and a strong signal at

5725. This strong signal is 15 wafers, prior to the actual failure
event at 5770. Fig. 8(c) is an expanded region of the neural
network learning curve for prediction of the standard deviation
of pressure for a prediction distance of one wafer. It can clearly
be seen that the neural network is able to detect the fluctuations
in the standard deviation. However, as Fig. 8(d) indicates the
fidelity of the reproduction of the process trace is not good.
In this figure training was stopped at 5000 samples so all the
data shown are for validation of the network prediction.

IX. CLUSTER CLASSIFICATION AND NOISE

ANALYSIS EXPERIMENTS: SUMMARY

In addition to the above, we conducted experiments in noise
analysis and application of self-organizing neural networks
for fault identification. Briefly, the self-organizing networks
used the full time stream data as input with a window width
of one time segment. This input space was shattered by
a second order polynomial, and the connections from the
polynomial layer were trained by the winner-take-all approach
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Fig. 9. Schematic showing the asymptotic limits for the training and testing
curves.

(cf. [26], [27]). The network had 15 (arbitrarily chosen)
output classes. Although the approach seems reasonable, (i.e.,
pattern matching input vectors to output classes) we found that
apparently the noise level was too high to enable adequate
clustering for classification.

In order to understand better the noise issues we applied
some methods discussed by Corteset al. [28], [29]. Referring
to Fig. 9, to a first approximation, the asymptote of error for
the training and testing curve for a neural network that has
been optimized in number of nodes and trained with a huge
training file, is equal to the noise inherent in the database.
Thus, the neural network can act as a tool for measuring
the noise in the training data. This will be an indication
of the prediction error-limit with the existing data. Doing
this with the statistical summary data and using the neural
network described in the Section VII, we compute that the
error inherent in the database is about 31%. So if the fault
precursors are much below this level we will not succeed in
seeing them with a neural network. Of course faults are much
stronger signals and they can be seen by the neural network,
as demonstrated in Sections VI and VII.

What is the noise limit at which one could detect fault
precursors? Of course as seen in Fig. 3, the noise is not
Gaussian, but for the sake of argument, assume Gaussian noise.
Following some of the ideas of [30] and [31], we constructed
a surrogate data set, or an artificial data set, to test noise limits
in detection of precursors. Specifically, we wanted to quantify
the noise level for detection of precursors with time delay
neural networks. Using the artificially constructed data set,
and successively adding Gaussian and random “spikey” noise,
we found that precursors, (i.e., deviants on the order of 10%)
could be detected with noise as large as 30% (all relative to
the main signal). Further, we found that the noise could be as
large as 40% to still detect failures, but the precursors were
no longer observed.

X. DISCUSSION AND CONCLUSION

The majority of the literature on failure analysis involves
identification and classification (cf. Basseville and Nikiforov
[10]). The paradigm for most of the methods is based on
having a model of the process. Then we can observe precursors
as level changes in the target. We have shown results for
several approaches to failure mode prediction of subsystems.

Although our experiments have focused on plasma reactors, it
should be obvious that similar techniques could be applied to
many processing tools and processes.

Predicting pressure or some other reactor state is a first step
in predicting failures. Without the ability to predict the state we
can not predict a fault. We have examined an autoregressive
model that shows a lag of 30 time units. This model is an
example of a Markov process. If we know the pressure at
time, we can predict the pressure at . However, our
prediction accuracy will decrease if there is a failure between

and . We have demonstrated that a neural network
can induce, or build, a Markov model from a database of
observations of the process state. The induced Markov model
is only as accurate as the noise inherent in the database. In
our case, we discovered that the noise level is at 31%.

Detecting precursors to failures is equivalent to predicting
failures. We demonstrate that neural networks can detect
precursors to failures, even in the presence of noise at 30%.
The best approach we discovered is to use time-stream data of
standard deviations of the process signals. In other words, by
collecting the standard deviation of fluctuations of the process
signals for each process step and assembling a time-stream of
these data we can observe precursors about a dozen wafers
prior to actual failure events. Faults, of course, are stronger
signals than fault-precursors and they can be detected at a level
of well above 30%. The neural network can filter a significant
level of noise on the input, deal with cross correlations and
autocorrelations. It can self-organize its own model of the
process from a small training set and continue to adapt to
changing process conditions.
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