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A System Model for Feedback Control and Analysis
of Yield: A Multistep Process Model of Effective
Gate Length, Poly Line Width, antl/ Parameters

Edward A. Rietman, Stephen A. Whitlock, Milton Beachy, Andrew Roy, and Timothy L. Willingham

Abstract—We present a large system model capable of pro- learning machines is the primary focus of this project. With a
ducing Pareto charts for several yield metrics, including effective |earning machine model of these processes, we are able to con-
channel length, poly line width, I,, and I,u1,. These Pareto charts q,¢¢ online Pareto analysis to find the processing steps that have

enable us to target specific processes for improvement of the yield _." " .~ . . .
metric(s). Our neural network model has an accuracy of 80% significantimpact ori.;; and we will be able to do this on a reg-

and can be trained with a small data set to minimize the feedback ular basis to understand the changes affeciing
time in the control loop for the yield. The system we describe has  In this paper, after reviewing the literature, we discuss the

been implemented in a Lucent Technologies microelectronics lab database and statistical analysis of the data used for the study.

in Orlando, FL. Then we introduce some of the learning machine architectures
and the difficulties of scaling them up to the size required for

. INTRODUCTION this project. The last part of the paper discusses the results and

HE MANUFACTURING of CMOS devices requires implementation issues.
hundreds of processing steps. At the end of manufac-
turing, various yield metrics (e.g., transistor parameters and
circuit tests) are determined by extensive electrical testing. It
should be clear (and has been demonstrated [1]) that not albne of the main objectives of statistical process control
the processing steps have impact on each of the yield metrigsto provide feedback control with humans in the feedback
For example, interconnects between metal layers (called vigsdp. Thisa posterioriapproach compares the end result of the
require five processing steps for their manufacture. Alongrocess with the target specifications. By applying the rules of
with the manufacturing of the vias, other structures known agatistical process control (SPC), the engineers determine if a
via-chains are fabricated. These via-chains are used as a {®stess is within specifications and adjusts the control parame-
structure to measure yield of the via manufacturing processggs accordingly (cf. [2]). The feedback control effected is only
In effect, the cluster of processes for via manufacturing cous good as the statistical metrics and the engineering staffs’
be viewed as a mini-fab that makes only vias, and the via chajfterpretation of these metrics. The major disadvantage of this
resistance is the yield metric for this mini-fab. approach is that corrective action is taken after processing.
Similar to the via mini-fab, in this paper, we focus our attenfhys, several batches may have already been processed by the
tion on a mini-fab devoted to manufacturing a transistor Stl’uﬁme the corrective action has been taken. We can, at |east,
ture known as gates. The yleld metric for our mini-fab is thﬁnprove the decision-making Capab|||ty of the engineers by
effective channel length (and some other transistor parametegspviding them with machine learning programs that flag
Most of the process steps are in the early stages of the manu@@-of-bounds conditions quickly to provide improved SPC
turing and are not too scattered throughout the 300-step rogigtrics, thereby improving the feedback control. Moreover,
during the manufacturing. Our basic conjecture is that only 2dth machine learning programs used for yield prediction, we
manufacturing processes impact on gate fabrication and thus¢a@ provide some level of feedforward control.
effective gate lengthZl.). This of course is reasonable, be- A few papers have appeared in the literature focusing on ma-
cause we don’t expect a metal deposition or a via etch procegse learning and SPC (cf. Benedeal. [3], Guo and Doolen
to have a direct impact on the transistor parameters. Support[ag Smith [5], Hwarng and Hubele [6], [7], and Baketral. [8]).
this conjecture with nonlinear mapping relations developed lgyne of the best papers is by Hwarng [9]. It discusses a system of
several parallel neural networks for detecting cyclic data in SPC
control charts. Turner [10] has observed that there is a correla-
Manuscript received March 8, 2000; revised August 14, 2000. tion between real-time monitored process parameters, such as
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Fig. 1. Schematic of the cross section of a transistor—the lehgghthe printed length of the gate. The effective length is shorter because the doped regions
diffuse under the gate.

data are used in linear regression models. The output of telsown in Fig. 1. The region between the source and gate and
is then fed into physical device/circuit models for electricdletween the drain and gate is doped with specific types of ions
performance prediction. to enhance some of the characteristics of the transistors. These
Kim and May [12] present a very interesting feedforward apens are “injected” by an implant device and then the ions are
proach to yield control. Their system model is designed for opiduced to diffuse by a thermal treatment known as annealing.
timizing several yield metrics at the end of manufacturing viaslithough great care is taken during the manufacturing to limit
for multichip modules. The system model consists of four sulie diffusion of the ions under the gate structure, some spreading
modules, each of which predicts a yield metric. The yield metris inevitable. This has the effect of reducing the gate length. The
from the submodule is then fedforward into the next submodeffective length.rr, is measured by electrical tests of the speed
to improve the prediction, and the output is used in a genebti€the transistor after manufacturing and is given by the relation
algorithm to optimize the process recipe for each step. This ap-
proach could be utilized on many manufacturing processes. The Leg = L —2)

problem with attempting to apply it to our task is that the number . . .
of processing steps between the first and the last is quite |ar6/é1_ere)\ is the lateral distance the source and drain ions extend

So, the mapping relation between the early steps and the fiHAf€r the gate antis the “printed” length. The factors that in-
yield metric are very ill-posed maps, i.e., the same functionf€nce effective gate length include product code (pattern den-
can be produced by many different function arguments, and {f&): OPerating voltage for the devices, and, of course, manufac-
same argument can give rise to many different functionals. {jfing Processes such as implant, anneal, gate etch, lithographic
short, this will look like noise and reduce any chance of Su[g_ev]elopment, etc. More details dng can be found in Wolf
Ce-?-i'e work we report here does not use any physical device_From discussions_with the engineers_in the fab, and consid-
models. Furthermore, unlike Boskétal.[11] or Kim and May ering do_zens of routing reportg, we decided that therg were 22
[12], our models are not used in a predictive mode (i.e., feedfd}:0CeSSing steps that had primary and secondary impact on
ward), but rather in a feedback mode, and the output from oﬁf“; These processing steps compr!se the key steps lﬁet{he
models is the computed transistor parameters. The results Gé2i-fab. These 22 steps are the primary steps that define the
cussed here are exactly like those discussed in [1], except tAate Structures on the integrated circuit.
itis a much larger system model and provides more detailed jp- .
formation in the Pareto charts. B Les Mini-Fab
It should be possible to use the Pareto charts to select specifidhe L.y mini-fab is similar to the via mini-fab [1], but is

subprocess modules to optimize for the yield metric of intere&tuch larger. In this case, we are concerned with the steps asso-
and to use that information to construct partial models, similgiated with manufacturing the gates for the transistors, and our
to the Kim and May model [12] for automatic feedback and.z mini-fab yield metrics are the effective linewidth, the poly
feedforward control. linewidth, and the transistor parametefs, and I.,,,. Table |

lists the 22 processing steps comprising the mini-fab. Al-

Ill. EEFECTIVE GATE LENGTH AND THE MINI-FAB ConcepT  though these processes are scattered throughout the 300-step
route during the manufacturing, our basic conjecture is that only
these 22 manufacturing processes impact on gate manufacturing

As the devices shrink on VLSI chips, the main dimension thahd thus the effective gate length.f). Of course, in reality,
summarizes the size is the gate width or channel length. Typiterspersed between the 22 processes are other processes. We
cally, a 0.5:m technology has transistor gates printed at a widtdre simply isolating these as an abstract cluster of processes. If
of 0.5m. This printed length or the physical gate lengthjs this conjecture is correct, then we can cluster these processes

A. Gate Length—Description
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TABLE | (0.5um technology). The data were from May 1995 through
February 1998. Each line in a file contained the following:
step number process d ddhh lot b . t b
A051005 implant P, for threshold woltage adjust ate (yymm mm)’ 0 num_ €r, processing-step number,
AOBEO52 hard mask etch, gate level technology, product code, equipment ID, operator ID-code
AOBE176 poly gate etch (code numbers for the human operators), inline parametric
A071007 implant P for lightly doped drain (code names/numbers for the parametric tests) nakhe,
208:008 implant B, ';gh“V dOP‘/ed drain parameter namelV parameter mean valud}V parameter
091006 implant As for source/drain standard deviation, andlV’ parameter sample size. Each lot
A10l008 implant B for source/drain . . . .
B05D008 deposit gate oxide of information con'S|ste.d of 23 processes (22 processing s.teps
B07D010 anneal diffuse of lightly doped drain and one “step” with yield data). There were 9 technologies
B12R003 RTA reflow for window 1 (e.g., analog, BiICMOS-3V), 550 product codes (e.g., FPGA,
B19D018 forming gas anneal DSP), 112 equipment IDs, over 1100 operator IDs, 55 inline

C05D009 diffuse P into poly
C05L002 deposit poly
COBE053 spacer etch

parameter tests, and 23/ tests. In the last two cases, the
names for the tests are not standardized, and there may be

C10D015 flow BPTEOS dislectric 1 glass several names for the same test or similar tests with different
C12R004 RTA metal 1 barrier anneal test structures.

D05L028 deposit hard mask for gate etch We then obtained scalar numbers (RIM and NCHIP, de-
DATTLOY IV measurements, Leff, lon, Isub, poly width scribed subsequently) from a lithography database. These
POSPO10___ lapply photo resist for gate two numbers are used in the computation of pattern density.
PO5P020 expose PR for gate . . .
POSP030 develop PR for gate Throu.gh extensive UNI>§ and C programming, all these fllies
PO5P050 measure PR for gate were joined and reorganized to result in a new ASCII flat file
Y06Y001 measure line width after gate etch of 114 megabytes (about 8:1 reduction in data base size).

The categorical variables were converted to code numbers and
finally into binary vectors (to be described subsequently).

as if they Were an individual SUPErprocess (mini-fab) .Wlth the The data were preprocessed so that all the data associated
wafers visiting these processes sequentially. The physics and en

ineering associated with these steps are described in StreetW'tFﬁ one lot and one processing step was recorded in one record
g 9 P rcﬂ‘aan ASCII flat file. This new file contained 111117 records
[13] and Wolf [1414].

and 5646 unique lots5(46*23 = 129858, therefore not all
C. Objective and Goals for the Project the lots were processed by all the steps.) As an example of one

L ) ) ) ~of the records, consider the following vector which is discussed
Our objectives are to find a regression “function” that W'”and shown at the bottom of the next page

allow us to conduct sensitivity analysis. We would like to under- The first four fields are a unix time stamp, the date/time, lot

stand what are the driving factors fégg, poly linewidth, I,,,, umber, and the process code number (in this case, code 12

andl,,, and how these factors change from month to mont&, C05-D009, diffuse phosphorous), respectively. The next 25
from product code to product code, from te(.:hnoI.oQ]y to tec elds, a binary vector, represent the technology. In this case,
r?°'°9y’ frqm lot o lot, and from tool to'tool. With this mforma-t e seventh element is set+d.. The remaining elements in the
tion, we V.V'" have a petter toql fo_r engineers to cc_)ntrol some Q?ector are set te-1. This indicates that the technology is 0.5
the_mostlmportantyleld metricsin IC manuf_acturln_g. Inthe fol(-;_5 V. Although the data only have nine technologies the bi-
!owmg, we describe a system model we built and |mplementﬁgry vector contains sixteen “empty” positions for future tech-
in one of our fabs. nologies and makes the model easily expandable.

The nexttwo elements in the data vector are RIM and NCHIP,
respectively. RIM is the amount of unpatterned silicon along the

In the following, we will refer to parm-measurements anddges of the wafer, and NCHIP is the number of chips on the
IV measurements. The parm measurements are the resulivafer. These two numbers are used as indicators of pattern den-
parametric tests after individual processing steps. They are atély (actually weak indicators). The actual poly-density was not
called inline parametric tests and consist of measurements saghilable from the lithography database. Our rational for using
as film thickness, sheet resistance, and line width. Mhenea- this is that pattern density is a measure of the amount of pat-
surements are current-voltage measurements at the end of nieimed material (photoresist or hardmask) on the wafer during
ufacturing and are used to determine the electrical charactetise gate etch. High pattern density means a larger number of
tics of the final chip. They are measurements on the transistpay runners will be produced. Conversely, low pattern density
within the chip and represent the yield metrics for effective linemeans more of the poly is etched away, and less is left on the
width (L), the poly line width, and the transistor parametensafer after the etch. It is clearly dependent on the technology
I, andlgy;,. (Hereafter, this set of four yield metrics will simplyand product code. Some ASIC’s will have a large number of
be called L.i]. When specific elements of this set are needetightly packed transistors and more open area to etch. Others
we will refer to them accordingly.) will have a smaller number of transistors less tightly packed and

We extracted approximately 800 megabytes, consisting thierefore have a smaller open area. Obviously if we have a huge
34 ASCII flat files, from an SPC database. Each file containgdimber of very small chips on the wafer we will have a greater
one month of data on an old technology from our Orlando faipen area to etch than if we have a small number of huge chips.

IV. DATABASE |ISSUES
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The number of chips per wafer is therefore an indicator (albeit, The next 25-element binary vector represents ité
weak) of pattern density. parameters (called thdVcode vector). For this partic-

The next binary vector represents the tool code. The vectouigr example, they are: Le_NO0.5X15_B, LE_P_0.6X15_B,
long enough for possibly 25 different tools per process. In tid 0.5X15_H_Isub, N_0.5X15_V_lon, PY1_Width_0.6. The
case shown above, only the fourth elementis indicating the first two are L.g measurements. The next three atgy,
presence of tool ID# 726F2 all the other elements-ate I, and poly line width, respectively. They are simply code

The next 25-element binary vector represents the inline padmbers used in our database.
rameters measured at this process step. In this case, they maphe next 50 elements are grouped into two 25-element scalar
to the following inline measurements (see parm table in the Apectors. The first is the mean values, and the second is the stan-
pendix): dard deviations of the measuréd parameters.

All these elements are the relevant data for one lot at one
process step. The data were partitioned into inputs and outputs
21002-POLYTHICKNESS STDRANGE an_d normalized on—_the—.ﬂy while processing by the Iegrnlng ma-

chines. The normalization was for zero mean and unity standard
31001:MEANSHEETRESISTANCE:STDAVERAGE deviation.
31002:MEANSHEETRESISTANCE:STDRANGE
31003:MEANSHEETRESISTANCE:STDRANGE
41001:MEANSHEETRESISTANCE:STDRANGE

51002:STANDARDDEVIATION:STDRANGE We conducted cross correlation, autocorrelation, and proba-
bility distribution studies for all the variables. In this section, we
The next 25-element vector contains scalar numbers repvéll summarize the highlights. The full set of statistical charts
senting the values for the above inline measurements (this vecod graphs consists of two hundred pages and, of course, is be-
is called the inline parm code vector). The data were normalend the scope of this paper.
ized for unity standard deviation and zero mean. Elements notSeveral interesting cross correlations were observed among
present are set to the normalized mean value. the inline parameters. All the following correlations were

V. STATISTICAL ANALYSIS: PRELIMINARY DATA ANALYSIS

12716713 199503050528 9176040000 12
-1 -1-1-1-1-11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
9.780000 358.000000
-1-1-1171-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
-1-111-1-11-1-1-11-11-1-1-11-1-1-1-1-1-1-1-1
0.000000 0.000000 0.000000 38.889999 0.000000
0.000000 1.060000 0.000000 0.000000 0.000000
2.183333 0.000000 0.640000 0.000000 0.000000
0.000000 2743.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000
-1-1-11-1-1-1-1-1-11-1-1-1-1-1-1-111-1-11-1-1
0.000000 0.000000 0.000000 0.527000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000
0.577000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 103.820000 5.626000
0.000000 0.000000 0.518000 0.000000 0.000000
0.000000 0.000000 0.000000 0.053700 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000
0.011500 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 39.297600 0.529300
0.000000 0.000000 0.008000 0.000000 0.000000
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N
(Q)I umm 1:parnd3 By Col um 1:parmi ) TABLE Il
item number |short name |description
400 3 1lv2 Le_NHC.6X15_B
E 2[iv3 Le_N_0.5X15_B
] 3|ivd Le N_0.6X15_B
300 4liv7 Le_N___.5X15_B
3 5]iva Le PHC.6X15_ B
o 3 8|iv10 Le_P_0.6X15_B
% 3 7]ivi8 N_.5X15_H_Isub
g 2073 8|ivi9 N_.5X15_V_lon
= ] 9|iv20 N_.6X15_H_lsub
= 3 10]iv21 N_.6X15_V_lon
O 100 3 11]iv22 PY1_Width_0.6
1. TR N
O'E £ :(ivcode18 By Column 1:parm41 J
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIlIIIIlIIII v
0 100 200 300 400 3
Col um 1:parmdi 2400
2100 3
1800 3
Fig. 2. Cross-correlation plot of parm43 and parm41 (see the Appendix). 1500 E
@K =
T 1200 3
. . . . o =
greater Fhan 0.3 in magnitude (i.e-/—) (see parm table in the 2 900 3
Appendix). 3
600 3
parm13-parm4: 0.32 300 3 - .
parm31-parm5:-0.37 el T -
parm33_parm8:o-31 O_IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII ;
parm34-parm8: 0.37 0 100 200 300 400 !
parm33-parm10: 0.38 Column 1:parm41 - |
parm47-parm12:-0.35
parm33-parm24: 0.30
parm29-parm25: 0.53
parm34-parm25: 0.33 Fig.3. Cross-correlation plot of parm41 afid code18 (see the Appendix and
parm33-parm28: 0.47 Table ).
parm34-parm28: 0.37 . . L ) o
parm38-parm35:=0.52 predictive capability from this information. All this implies is
parm38-parm37: 0.53 that the desired mapping relations are nonlinear. A similar lack

of linear cross correlations was observed in the via mini-fab
model discussed by Rietma al. [1].

Turning now to the probability distributions, we will first ex-
amine the highlights of thél'sigma data. That is, the distribu-
tions of the standard deviations of th&' measurements. There
: are a few outstanding data points, but for the most part the distri-

parm42-parm39: 0.43 butions are quite tight. ThéV sigma22 is the most interesting
parm43-parm41: 0.98 with a mean value of 5.50 and a standard deviation of 63.65.

Statistically, these are significant, but in reality these crogx course, a few samples can cause the standard deviation to
correlations may have little or no predictive capability. For exblow up.” In addition, keep in mind that these numbers repre-
ample, parm43-parm41, with a correlation of 0.98, is plotted gent the moments for the distribution of the standard deviation
Fig. 2. The data are simply clustered in a small region of 2-spacé the /V sigma data.

There were also a few interesting cross correlations amongrhere are no outstanding features in the distributions of the
the I'V parameters. These include IVcode20-1Vcoded.42, IVmeans. All the distributions are reasonably tight. The mo-
IVcode21-1Vcode4—0.34 and IVcode21-1Vcode20: 0.37 (seements for these distributions, as well as the moments for all the
Table 11). other distributions, were coded in the learning machine software

Cross correlations between the inputs and the outpdits normalizing the inputs and outputs prior to any learning it-
were also examined. There were no linear cross correlaticgrations.
larger than about 0.25. The largest cross correlation wasFor the inline parametric measurements, the distributions
between IVcodel8 and parm4l (N_0.5X15 H,, and are, for the most part, single-mode Gaussian or log-normal in
particle_delta_std_avg). As shown in Fig. 3, there is littlstructure. A few of them are multimodal. The following are

parm39-parm37: 0.33
parm4l-parm37: 0.33
parm42-parm37: 0.34
parm39-parm38: 0.67
parm42-parm38: 0.46



RIETMAN et al: A SYSTEM MODEL FOR FEEDBACK CONTROL AND ANALYSIS OF YIELD 37

prominently bimodal: parm2, parm7, parm12, parm14, parm21,
parm32 (see the Appendix for index of code).

In examining the autocorrelations for thdVparms
(IVmeans), we find that there are no significant autocor-
relations in the variables. The same cannot be said about
autocorrelations on the inline parameters. Parm20 had a strong -
autocorrelation out to a time lag of 50. This autocorrelation
suggests one could model the data with an ARMA model
[15]. Based on the time-lag, we believe these autocorrelations
are caused by operator shift changes and measurement style
differences among the operators. In the newer generation of
technology, these problems have been eliminated and there are

no autocorrelations. —_—)
In summary, the inputs and outputs are vectors of analog and
binary information. The elements of one input vector are not —_—

correlated with similar elements from another input vector. A
similar observation has been made concerning the output vec-
tors. The cross correlations that exist between vector elements
are weak. Therefore, we can consider the input—output vectors
as independent identically distributed (11D) random pairs. Some —
theoretical results show that even slightly dependent data pairs
behave roughly the same as independent identically distributed
data [16]. Furthermore, because of the near IID nature of the _ _ .
data, our machine learning models can have single or multipld 4 Block diagram for two possible models of the: mini-fab.

outputs. (If the data were cross correlated we would need mul-

tiple output models.) The few autocorrelations suggest that thé8éhe L.y model. This suggests two approaches to modeling the
variables may be best entered as time-delay or recurrent conrfeez Mini-fab.

tions to the input. As we show in the next section, only multiple Fig. 4 shows a block diagram for two possible system models

outputs would be efficient for this project, and the input dimer0 address thé.; problem. ModeA is an hierarchical structure
sion may be large. and ModeB is not. ModelA consists of individual process step

models whose outputs feed into a model to computelthe

The inputs to the process models may be time-delay windows

of inline parameter measurements, tool data, product code infor-
In this section, we will briefly discuss a systems’ view ofnation, NCHIP, RIM, time/date, and technology (i.e., voltage

the L.g mini-fab and discuss the theoretical foundation for thievel). The outputs of the process models are inline parameter

VI. SYSTEMS AND LEARNING MACHINE ISSUES

learning machines investigated. values one or more time units into the future. If time-delay is
used, the models are predictors. If no time-delay is used, the
A. Systems View df.y Mini-Fab models are regression estimators. We want to determine the ef-

The mini-fab is an abstract idea allowing one to cluster pré€Cts Of tools and product codes on the inline parms and the ef-
cesses that are associated with one or a few yield metrics. EtS Of tools, technologies, and inline parms on the|. This
any given yield metric (e.g.L.), we ask which processing system model has the dlsgdvantage of passing errors from the
steps are the most important for determining this yield metrig!PSystem models to the higher level model, but has the advan-
These steps become the relevant mini-fab. From a systems (3@ of small numbers of inputs per subsystem.
spective, wafers needing transistors are input to the mini-fab,/n contrast, modeB's inputs are the inline measurements
and wafers with transistors are the output from the mini-fab, TH®M €ach process, the tool data, product code information,
processes listed in Table | are the subsystems in the mini-f4g1e/date, and technology (i.e., voltage level and product code).
After some of these processes, there is an inspection or miythis case, the inline d_ata, entered into the model, will be for
surement. These measurements are yield metrics pointing?lbth® Processes of a given lot. The output would be fhe |
the quality of the individual process (or the subsystems in tf@mPutation for that lot of wafers. Thus, the model would work
mini-fab). The collection of these subsystem metrics can 98 @ lot-by-lot basis. The disadvantage of this model is the
mapped to the entire systems’ metrics. That is, the inline paf4i9e number of inputs at the input level. Its advantage is that

metrics, or “parms,” are mapped to the yield metric for thgTOrS are not compounded.

mini-fab—in this caseLes, poly line width, 7., and ... Mathematjcally these models could bg expressed as follows.
Disregarding for the moment the architecture of the learnifjdel A is given by the system of equations

machine for the task, we want to build a regression machine to Z1: Xy -1

effect the appropriate system mappings. Consider that we have Za: Xo — Yo

22 processing steps. For most of the steps, we have an inline ° Q

measurement parameter indicating how the tool used in that step . — 1L

performed. At one level, these measurements are the outputs °

from the processes. From another viewpoint, they are the inputs Zoo: Xo9 — Yoo
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whereZ; indicates the process model, akigdandy; are the full
input and output vectors, respectively, for that process model.
The Z maps are then combined with tflemap to calculate the
[Leg]. Each of theZ maps does & — %" mapping, and
m andn are on the order ofrff ~ 181, n ~ 25). TheQlmap
combines all th&; models so it does®” — Riandp andg are
on the order of ~ 578, ¢ ~ 11). These values are calculated
as follows. There are 22 processing steps each with 25 scalars of
data @2*25 = 550). In addition, there are three scalars for the
time, RIM, and NCHIP, and there are 25 binaries representing
the product code or technology. The total input dimensionality
is 578. The 11 outputs farare given in Table Il. It is important
to realize that these 11 outputs, e B.x-N, Log-P, etc., are all
members of the four classes of output types that fall into the
[Leg] set.

Model A can be expressed more compactly as

AXx Ly 2o
Model B can be expressed more directly by
B:x— L

but, in reality, there are more difficulties involved in finding this
mapping.

The primary difficulty of this model is that it does a
R398Z . ¢ mapping. The dimensionality of 3982 comes
about as a worst-case estimate. We have 181 fields per
record and we would need 22 processing steps of data -
(181*22 = 3982). Although this could be done with many (b)
types of learning machines, in practice it could be dIﬁICUIIE'g. 5. Two neural network architectures described as examples.
with a small number of samples (we have 5646 samplesﬁ.
Notice, however, that many of the elements are binary elements
representing active scalar inputs. For example, the inline pan@twork, to indicate which inputs in the scalar to feedforward.
code vector, discussed in Section 1V, indicates which of thehe others are simply not fedforward. The input dimensionality
inline parameters are/are not in the inline data vector. Keepfor network B is five. For the actual gating inputs shown in
mind that each inline data vector consists of 25 scalar elemerftig. 5(b) the input dimensionality is two. Using this approach,
but all of them are not used for any given lot. In fact, only &ve can have a huge reduction in the actual dimensionality for
few of them are used for any lot and most of the elements draining.
simply <empty> for excess capacity in the model. The output None of our input scalar vectors (inline parameters) for any
vector from the system model is also padded with excesbthe processing steps are filled with the full set of 25 elements.
capacity. There are only a little over one hundred inputs actiiever are they all full at the same time for a given lot. After we
for training the learning machine. The rest of the inputs agelect a reasonable architecture offline, it is installed online and
excess capacity. trained to work with current technology and processes. The ex-

Let's examine a simple example to better understand the copess capacity in the learning machine system model will allow
plexity of the models and how we can circumvent the curse ifto adapt to new generations of technology, new processing
dimensionality (cf. Vapnik [17], Gemaet al.[18], and Hassoun tools being brought on-line, increased manufacturing capacity,
[19]). Assume we have an input vector of five scalar elememsw inline measurements, and new end-of-processing measure-
and an output vector of one element (i.e., a single scalar outpuents.

Associated with this five-element scalar vector is a five-elementTo reiterate, the inputs are viewed in clusters. We have 22
binary vector. Fig. 5 shows two neural network architecturesets of 25 scalar elements representing the inline measurements
The filled nodes represent binary elements (i-€1, or +1), and the associated binary vector for gating the inputs. This gives
and the open nodes represent scalar elements. For this probkenatal of 550 inputs. In addition, to train the neural network
the binary vector acts as signals to indicate which elementsvie have a binary vector representing which technology/product
the scalar vector the neural network is to “listen to” during theode is represented by each lot of wafers. This is a 25 element bi-
training. This approach is common in training neural networkgary vector (again including excess capacity) used in the input
when we want to associate specific binary information with spduring training. In addition, we have a Unix time stamp nor-
cific scalar information (cf. Masters [20]). The input dimensionmalized to a small number by dividing by a large number rep-
ality on networkA is 10. An alternative approach is shown inresenting the year 3000 (a Y3K bug ?), and we have the scalar
Fig. 5(b). Here we use the binary vector as a mask, or a gatimgmbers RIM and NCHIP. This gives a total of 578 inputs (a
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Fig. 6. The finalL . mini-fab neural network architecture.

huge reduction from the 3982 calculated above). The Unix timiemnction for the minimization of the output response error is
stamp is the date for the start of the lot in the mini-fab, i.e., trggven by

time the lot was processed by the first step in the mini-fab. Of 1/2

course, not all of these 578 inputs are active at any given time. o= Z (t =12

Most of them are always inactive. As in the small example in

Fig. 5(b) where the gating network reduces the input dimension-
ality to two, here the gating network reduces the dimensiona’ljig: first term represents the rms error between the targed

to 131, which leaves 447 inputs as excess capacity in the response. The second term is a constraint that minimizes
work. the magnitude of the connection weights If v (called the reg-

Just as there is a gating network to determine which inpd{garization coefficient) is large, it will force the weights to take
will be fed forward, there is a gating network to determin@" small magnitgde values. This can cause the output response
which outputs are fed back during the backpropagation phatg@avealow variance and the model to take on alinear behavior.

of training the network. Schematically the entitgy model is With this weight constraint, the cost function will try to mini-
shown in Fig. 6. mize the error and force this error to the best optimal between

all the training examples. The effect is to strongly bias the net-
work. The coefficienty thus acts as an adjustable parameter for

+y WP )

J

B. Neural Network Learning Theory the desired degree of the nonlinearity in the model. Details of
neural networks can be found in Rumelhetral. [21] and Has-
The output of a neural network, is given by soun [19], and details of learning with constraints can be found

in Vapnik [22].
As described above, the neural network has 578 inputs and

- Z [ij e tanh <Z Wi e a:Z)] ) (1) 25 outputs. Of these, only 131 are active inputs and 11 are ac-

i tive outputs. Both the input layer and the hidden layer also in-
clude a bias node set at constant 1.0. This allows the nodes to ad-
This equation states that tlith element of the input vectaris just the intersection of the sigmoids. The excess capacity in the
multiplied by the connection weighi#’;;. This product is then learning machine allows for new product codes, tool sets, etc.
the argument for a hyperbolic tangent function, which resulfdhe network has one “hidden layer” with 20 hyperbolic tangent
in another vector. This resulting vector is multiplied by anotherodes, and so there are a total of 2860 adjustable connections
set of connection weightd’;;.. The subscript spans the input (132*20 + 20*11). (This calculation included the bias nodes
space. The subscrigt spans the space of hidden nodes, ard each layer.) We have almost exactly twice as many samples
the subscript spans the output space. The connection weigh646) as we have adjustable parameters.
are elements of matrices and are found by gradient search oThough the number of connections, or adjustable parameters,
the error space with respect to the matrix elements. The costa learning machine is not the critical element determining

J
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the generalization ability of the machine, it is certainly a crit-
ical element. Another critical element is the VC-dimension to
which we refer the reader to the literature (cf. Vapnik [17], [23], Network
Abu-Mosstafa [24], Baum and Haussler [25], Guyairal.[26], trained with
Vapnik et al. [27], Holden and Niranjan [28], and Hausskr large database
al. [29]).

The question of training neural networks with small data sets
is significant. Huangt al.[30] discuss a neural network plasma Arbitration
etch model with 88 connections and 17 samples. They used the network
“leave-one-out” cross-validation procedure (cf. Cohen [31]) to
develop the model. Kim and May [32] discuss a D-optimal ex-
periment to design the network architecture of a plasma etch
model, and Kim and May [33] use a modification of the back-
propagation algorithm in which the cost function allows the net-
work to slowly degrade or forget information that is no longer
needed. This is essentially the same as weight regularization or
weight minimization to reduce the network complexity. Newer

methods of automatic model selection have essentially elim- ) o
ig. 7. Old and new neural networks connected in an arbitration network for

'nate(_j emplrlcfal deS|gp and selection Qf neural network aE&%sitivity analysis. The old network is trained with a huge data set and the new
learning machine architecture (cf. Vapnik [17], Devrelal. network is trained with a small recent data set. The arbitration network is then
[16], and van der Vaart and Wellner [34]). trained with the new data set and incorporates the results from the more mature
For our model, cross validation consisted of two steps. Firgﬁtwork'
we cross validated by using randomly selected data from the
database that was not used in training. Our second model véhis chart consists of using the real database vectors, adding a
dation consisted of studying the Pareto charts for data sets fremall quantity to one of the inputs and observing the output.
which we expected specific results or trends. This validation wlllsing this procedure, a matrix of the derivative of the response
be discussed in detail in Section VII. with respect to the input is created for the elements of each input
vector. Each row in the database will give one row in the matrix.
C. Sensitivity Analysis to Investigate the Driving Factors of 1he number of columns will equal the number of inputs to the
Lo petwork or _Iear_mng machlnt_a process model, and Fhe elements
in the matrix will be the derivative of the output with respect
Once the model is built, we would like to understand its bee the derivative of the input. The columns of the matrix are
havior. There are two approaches to investigate the respons¢heh averaged. The derivatives are signed so the absolute value
the model. One of these is sensitivity analysis leading to the cagtaken for each element in the vector. The resulting vector is
struction of a Pareto chart or bar chart, the other is responggd to construct the bar chart.
curves (surfaces). Neither method is very reliable for nonlinearOnce the model is constructed the above procedures result
systems. However, the methods can supply some insight into thgjood, though first-order, sensitivity analysis. In the case of
process. [Leg], the driving factors can be determined from a frozen
The sensitivity of the output with respect to the inputs is founghodel. In reality, the driving factors forLg] will vary from
from the partial derivative of the particular input of interesiveek to week. We know that the product code may be the
while holding the other inputs constant. The observed outputdeimary factor one week, and gate etch the next. We would
then recorded. By repeating this for all the inputs, it is possibli&e a procedure similar to that used by the yield analysis
to assemble response curves. The procedure has been descshgiheers. They can draw on a vast knowledge base from years
by Klimasauskas [35] and by Deif [36]. For response curves, tb€experience. That knowledge is embeddethigir biological
actual procedure consists of using a mean vector of the inputsural network. They can examine a small set of new data from
and making small, incremental changes on the input of interestecently manufactured product and deduce a likely factor
while recording the output. The first input, for example, is secausing the observed yield.
lected and a small value is added to it. All the other inputs are atif we conduct sensitivity analysis on a frozen model of a
their mean value, which should be very close to zero for normarocess, the results will always be the same. Because the math-
ized inputs. The vector is then fedforward to compute the outpainatical operations of neural networks are vector-matrix multi-
of the learning machine or system model. Further small valuglications and if the matrix does not change (i.e., frozen model)
are added and the outputs are collected in a file for graphics. Tdred the same vectors are used in the multiplication, than the
final results can be represented as a curve of the change inghmme results can be expected. Ideally, we would like to train a
input value versus the network output. new model of the process on the small sample set sequenced
The importance of the inputs can be ranked and presentedritime (e.g., 100 batches of wafers) and use that for sensitivity
a bar chart known as a Pareto chart. Usually, the number of baralysis. The approach we take is similar to that used by the
in the chart is equal to the number of inputs. Each bar represeyitdd analysis engineers. We readapt the old network to the new
the average sensitivity of that input. The procedure to constrisrhall data set while using statistical regularization. We also train

Network
trained with
small database
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Fig. 8. Example of learning curve fdr.;; neural network mini-fab.

a new network (or learning machine), of the same architectu accuracy of the model expressed as a fraction

with the new data set. After these two networks are trained on t
new data, their outputs are fed into an arbitration network (Sg.g |
Fig. 7). The final combined network model is used in the se0.8
sitivity analysis. Basically, what this amounts to is conductin®”’ |
sensitivity on the two networks and comparing the Pareto chaig 5 |

VIl. RESULTS AND DISCUSSION

Our (132-20-11) network was trained according to (2) wit
5000 lots of wafers. Fig. 8 is an example of the overall learning
curve. Keeping in mind that there are 11 active outputs, the cumsig. 9. Bar chart showing accuracy of the model.
represents the average of the rms error for each of these 11 out-
puts. That is, we compute the rms error for each output and thieno be used for sensitivity analysis, we will use our intuition of
find the average of those. The curve shows that after 5 milliahe process(es) and realism of the Pareto for known sets of data
learning iterations, the neural network was still learning, bais our validation. Of course, intuition and realism are difficult
that the average rms error is about 0.20. This implies that tfeequantitate, so we conducted several experiments in training
model is about 80% accurate for the combined outputs. The agth different sizes of data sets and biased data sets. But, in
curacy of the model for the individual outputs is shown in the barder to understand these results we first need to describe the
chart of Fig. 9, and the individual outputs are shown in Table lbutputs presented in Table Il. Items 1 and 3 are d6tech-

We see, for example, that the model for the pré-technology, nology, N-channeL.;. Iltems 2 and 4 are 0.6m technology,
N-ChannelL.g, is about 90% accurate. The other outputs al-channelL.g. tems 5 and 6 are 0.6m technology, P-channel
interpreted similarly. Leg. ltems 7, 8, 9, and 10 are transistor paramet&gg, and

We performed a validation on the model by first training witt,,,, for 0.5;um and 0.6zm technology. Item 11 is the poly line
about 2/3 of the data and using the other 1/3 for validation. Thigdth after manufacturing. In addition, there are two different
1/3 sample was selected at random from the data file. Once test structures for items 1 and 3 and two different test structures
saw that the validation error was at about the same level as theitems 2 and 4.
training error, we quickly went on to explore the sensitivity and Once we have a good model, we can conduct sensitivity anal-
Pareto. If the training error is acceptable and if the network wgsis to determine the impact of each of the inputs on each of
trained with a large number of samples, then our philosophyttge outputs. Table | is a list of code names and a description of
to simply move on to the next stage testing in the real world. the individual processing steps. (They are not in processing se-
short, we let the real world be our validation. Since the modglence, but rather in alphabetic order by code name.)

V2 M3 W V7 v ivIo VI8 ivi9 20 21 22
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Fig. 10. Sensitivity response curves.

Sensitivity analysis is conducted as follows. Since for eachIn another experiment, we trained the learning machine on a
of the individual processing steps, there are several inputs (eggnall data set of 150 lots that were selected as a sequence in
mean value and standard deviation for film thickness and metame. With this small data set, the actual training was done by
value and standard deviation of sheet resistance), and since tlsedecting samples from the 150-lot set at random and feeding
are clearly coupled to each other, it makes sense to “tweak” thérforward into the neural network for training. The validity of
in parallel. (as will be described below, this approach presentedining with a small data set was discussed above in the section
the most “believable” results). The “tweakings” were done byn neural network theory. After training, a sensitivity analysis
incrementally changing the relevant set of inputs by 0.1 startimgas done to compute the Pareto chart. The results are shown in
at —1.0 and ending at 1.0. Thus, there were a total of 21 sebe Appendix. The charts for this experiment are labeled “little
of incremental inputs. All the other inputs to the neural networdtata set.”
were set to the mean value of 0.0 (recall the data are normalized’ he objective of the experiment in training with a small data
for zero mean and unity standard deviation). After each feeskt is to observe thd.[¢] Pareto for a small group of lots. This
forward, we observe the output and plot curves similar to thoa®uld be equivalent to the yield analysis engineer sitting down
shown in Fig. 10. Here we see four sensitivity curves. The ewith a week of data and figuring out which processing steps are
tire range of input results in sigmoid curves for the output. Ftraving most impact on/.¢] that week. With our automated
example, The curve labeled “AO6E176" shows the sensitivigoftware program, this will give almost dynamic Paretos for the
of the poly gate etch process on thechannel electrical line [L.g] set.
width (L) for a 0.67:m technology. The other curves can be The third experiment consisted in biasing the training of 5000
decoded with the use of Table I. When the curve has a positiats. We selected all step data for spacer etch (CO8E053) to be
slope, this indicates a positive correlation. For the “AO6E17&ither—1 or+1 on the input. The deciding point was based on
curve (the gate etch), this indicates that more oxide remainitige target value for output number 1V28,(, for 0.54:m tech-
gives higherl.¢. The other curves can be interpreted similarlynology). If the target value from the database was less than zero

For each process step listed in Table I, we could generatéttae mean value), the inputs for COBE053 were set1olf the
whole set of sensitivity curves. By measuring the slope (in thiarget was>0, the inputs were set te¢-1. This means that the
indicated region of Fig. 10) we can produce the Pareto chéihin thickness after the spacer etch would be either too thin or
of the individual processing steps (Table I). Typically, one theoo thick. So, if we look at the Pareto charts, the height of the
takes the absolute value of the slope in preparing the Parbty for spacer etch should change significantly for thelQ,b-
chart. The direction of correlation is lost by this step, since tyghart, and because of interactions we should also see significant
ically one wants to find which processing step has greatest iohtanges in the spacer etch for the 0,5-chart. We would ex-
pact. The entire set of eleven Pareto charts is shown in the Agect the spacer etch bar to increase in the biased experiment, and
pendix. We conducted three experiments with the learning nthis is what was observed. Usually, actual directions of changes
chine model of the system. In one experiment, we trained thee difficult to predict because of the strong nonlinearity in the
network with 5000 lots and then conducted the sensitivity. Theural network model. The Pareto charts can only provide infor-
Pareto charts for this experiment are in the Appendix and haw&tion as to which processing steps are most important. Subtle
the label “not biased, big data set.” changes from one chart to the another are not interpretable.
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VIIl. CONCLUSION parm25 = “31001:MEANSHEETRESISTNCE:
STDAVERAGE”
We have discussed an implementation in our fab of a largarm26 = “31001:POLY%STDDEVIATION:STDAVERAGE”
system model capable of generating Pareto charts that suggesm27 = “31002:%STANDARDDEV.:STDRANGE"
which processing step is having most impact on four yield mgtarm28 = “31002:MEANSHEETRESISTNCE:
rics: effective line width L.g), poly line width, I,,, and Iyy,. STDAVERAGE"
In addition, our system is capable of indicating which produgarm29 = “31002:MEANSHEETRESISTNCE:STDRANGE”
code (e.g., 0.5AC, 0.5BCI-3V) is having most impact on thigarm30 = “31002:POLY%STDDEVIATION:STDRANGE”"
set of yield metrics. Due to space considerations, we did nuarm31 = “31003:%STANDARDDEVIATION:STDRANGE”
show the 11 Pareto charts of product code and tool ID. The fplarm32 = “31003:MEANSHEETRESISTNCE:
set of Pareto charts act as suggestions for yield enhancement STDAVERAGE”
and feedback yield control strategies. The current large systparm33 = “31003:MEANSHEETRESISTNCE:STDRANGE”
model can also be used in a predictive mode to enable us to alpatm34 = “41001:%STANDARDDEVIATION:

processing. This aspect of the model was not discussed in this STDAVERAGE”"
paper, but is similar to that discussed in Rietneaal. [1]. parm35 = “41001:MEANSHEETRESISTNCE:
Our model is accurate to 80%, and it is capable of being STDAVERAGE”

trained on only a few days of lot data. This training on a smaharm36 = “41002:%STANDARDDEVIATION:STDRANGE”
number of lots is significant, because it allows us to shorten tharm37 = “41002:MEANSHEETRESISTNCE:STDRANGE”
time involved in feedback control of these yield metrics. Theparm38 = “51001:%STANDARDDEVIATION:

next logical development would be to collect statistics on which STDAVERAGE”"
processing steps are the problem areas and to target thempfnm39 = “51002:%STANDARDDEVIATION:STDRANGE”
advanced process control. parm40 =“61001:LKBKFORDELTA:STDAVERAGE”"

parm41l = “61001:PARTICLEDELTA:STDAVERAGE”
parm42 = “61003:LKBKFORDELTA:STDRANGE”
parm43 = “61003:PARTICLEDELTA:STDRANGE”"

APPENDIX parm44 =*“71001:HAZE:STDAVERAGE”"
parm45 = “71003:HAZE:STDRANGE"
Parm Code Name Map parm46 = “90030:WAFLWDATA:LINEAVG1”
parml = “NA” parm47 = “90031:WAFLWDATA:LINEAVG?2”
parm2 = “100020:LINEWIDTHSUMMARY: parm48 = “90032:WAFLWDATA:LINEAVG3”
AVGFEATURES” parm49 = “90033:WAFLWDATA:LINEAVG4”
parm3 =“100021:LINEWIDTHSUMMARY: parm50 = “90034:WAFLWDATA:LINEAVG5”
SIGMAFEATURES” parm51 = “90035:WAFLWDATA:LINESIG1”
parm4 =“100024:LINEWIDTHSUMMARY: parm52 = “90036:WAFLWDATA:LINESIG2”
STEPPEREXPOSURE” parm53 = “90037:WAFLWDATA:LINESIG3”
parm5 =“10017:SETUPDATA:FOCUS” parm54 = “90038:WAFLWDATA:LINESIG4”
parm6 =“10018:SETUPDATA:EXPOSURE” parm55 = “90039:WAFLWDATA:LINESIG5”
parm7 =“21001:MEANTHICKNESS:STDAVERAGE”
parm8 ="“21001:POLYTHICKNESS:STDAVERAGE"
parm9 =“21002:MEANTHICKNESS:STDRANGE”"
parm10 =*“21002:POLYTHICKNESS:STDRANGE” Le_PHC.6X15_B

little data set

parmll =*“21002:REMAININGFOX:STDAVERAGE”
parml12 =*“21002:REMAININGGATEOXTK:

STDAVERAGE” . tinlnn
parm13 = “21002:REMAININGPOLY:STDAVERAGE” ; e * L ] g ’
parm14 = “21002:REMANINGGATEOXTK: LU

STDAVERAGE” YR EEEES23-EYBCIS5ESEES
parm15 = “21003:MEANTHICKNESS:STDRANGE” SEREfTicizigEsiEzrize
parm16 = “21003:REMAININGFOX:STDAVERAGE”
parm17 = “21003:REMAININGFOX:STDRANGE” .
parm18 = “21003:REMAININGGATEOXTK:STDRANGE” 07 1 erised s s e

parm19 = “21003:REMAININGPOLY:STDRANGE” | I
parm20 = “21003:REMANINGGATEOXTK:STDRANGE" oa | ] | T W e
parm21 = “21003: TWU:AVERAGEITEM24&6" : é | g ah l

parm22 = “21004:REMAININGPOLY:STDRANGE” o1 || L L ,, U
parm23 = “31001:%STANDARDDEV.:STDAVERAGE" ol BB H I EERETELLH HAH I
parm24 = “31001:%STANDARDDEVIATION: ElEcSs iEisiiiseifeiic’

STDAVERAGE”
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