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A System Model for Feedback Control and Analysis
of Yield: A Multistep Process Model of Effective
Gate Length, Poly Line Width, andIV Parameters

Edward A. Rietman, Stephen A. Whitlock, Milton Beachy, Andrew Roy, and Timothy L. Willingham

Abstract—We present a large system model capable of pro-
ducing Pareto charts for several yield metrics, including effective
channel length, poly line width, on and sub. These Pareto charts
enable us to target specific processes for improvement of the yield
metric(s). Our neural network model has an accuracy of 80%
and can be trained with a small data set to minimize the feedback
time in the control loop for the yield. The system we describe has
been implemented in a Lucent Technologies microelectronics lab
in Orlando, FL.

I. INTRODUCTION

T HE MANUFACTURING of CMOS devices requires
hundreds of processing steps. At the end of manufac-

turing, various yield metrics (e.g., transistor parameters and
circuit tests) are determined by extensive electrical testing. It
should be clear (and has been demonstrated [1]) that not all
the processing steps have impact on each of the yield metrics.
For example, interconnects between metal layers (called vias)
require five processing steps for their manufacture. Along
with the manufacturing of the vias, other structures known as
via-chains are fabricated. These via-chains are used as a test
structure to measure yield of the via manufacturing processes.
In effect, the cluster of processes for via manufacturing could
be viewed as a mini-fab that makes only vias, and the via chain
resistance is the yield metric for this mini-fab.

Similar to the via mini-fab, in this paper, we focus our atten-
tion on a mini-fab devoted to manufacturing a transistor struc-
ture known as gates. The yield metric for our mini-fab is the
effective channel length (and some other transistor parameters).
Most of the process steps are in the early stages of the manufac-
turing and are not too scattered throughout the 300-step route
during the manufacturing. Our basic conjecture is that only 22
manufacturing processes impact on gate fabrication and thus the
effective gate length ( ). This of course is reasonable, be-
cause we don’t expect a metal deposition or a via etch process
to have a direct impact on the transistor parameters. Supporting
this conjecture with nonlinear mapping relations developed by
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learning machines is the primary focus of this project. With a
learning machine model of these processes, we are able to con-
duct online Pareto analysis to find the processing steps that have
significant impact on and we will be able to do this on a reg-
ular basis to understand the changes affecting.

In this paper, after reviewing the literature, we discuss the
database and statistical analysis of the data used for the study.
Then we introduce some of the learning machine architectures
and the difficulties of scaling them up to the size required for
this project. The last part of the paper discusses the results and
implementation issues.

II. L ITERATURE SURVEY

One of the main objectives of statistical process control
is to provide feedback control with humans in the feedback
loop. Thisa posterioriapproach compares the end result of the
process with the target specifications. By applying the rules of
statistical process control (SPC), the engineers determine if a
process is within specifications and adjusts the control parame-
ters accordingly (cf. [2]). The feedback control effected is only
as good as the statistical metrics and the engineering staffs’
interpretation of these metrics. The major disadvantage of this
approach is that corrective action is taken after processing.
Thus, several batches may have already been processed by the
time the corrective action has been taken. We can, at least,
improve the decision-making capability of the engineers by
providing them with machine learning programs that flag
out-of-bounds conditions quickly to provide improved SPC
metrics, thereby improving the feedback control. Moreover,
with machine learning programs used for yield prediction, we
can provide some level of feedforward control.

A few papers have appeared in the literature focusing on ma-
chine learning and SPC (cf. Benekeet al. [3], Guo and Doolen
[4], Smith [5], Hwarng and Hubele [6], [7], and Bakeret al.[8]).
One of the best papers is by Hwarng [9]. It discusses a system of
several parallel neural networks for detecting cyclic data in SPC
control charts. Turner [10] has observed that there is a correla-
tion between real-time monitored process parameters, such as
current and voltage in a plasma reactor, and so-called “wafer-re-
sults” such as etch rate and etch uniformity.

Boskin et al. [11] have used a combination of regression
models and physical device models to predict IC performance
results prior to completion of manufacturing. Data from inline
electrical test measurements and other inline manufacturing

0894–6507/01$10.00 © 2001 IEEE



RIETMAN et al.: A SYSTEM MODEL FOR FEEDBACK CONTROL AND ANALYSIS OF YIELD 33

Fig. 1. Schematic of the cross section of a transistor—the lengthL is the printed length of the gate. The effective length is shorter because the doped regions
diffuse under the gate.

data are used in linear regression models. The output of this
is then fed into physical device/circuit models for electrical
performance prediction.

Kim and May [12] present a very interesting feedforward ap-
proach to yield control. Their system model is designed for op-
timizing several yield metrics at the end of manufacturing vias
for multichip modules. The system model consists of four sub-
modules, each of which predicts a yield metric. The yield metric
from the submodule is then fedforward into the next submodel
to improve the prediction, and the output is used in a genetic
algorithm to optimize the process recipe for each step. This ap-
proach could be utilized on many manufacturing processes. The
problem with attempting to apply it to our task is that the number
of processing steps between the first and the last is quite large.
So, the mapping relation between the early steps and the final
yield metric are very ill-posed maps, i.e., the same functional
can be produced by many different function arguments, and the
same argument can give rise to many different functionals. In
short, this will look like noise and reduce any chance of suc-
cess.

The work we report here does not use any physical device
models. Furthermore, unlike Boskinet al.[11] or Kim and May
[12], our models are not used in a predictive mode (i.e., feedfor-
ward), but rather in a feedback mode, and the output from our
models is the computed transistor parameters. The results dis-
cussed here are exactly like those discussed in [1], except that
it is a much larger system model and provides more detailed in-
formation in the Pareto charts.

It should be possible to use the Pareto charts to select specific
subprocess modules to optimize for the yield metric of interest
and to use that information to construct partial models, similar
to the Kim and May model [12] for automatic feedback and
feedforward control.

III. EFFECTIVEGATE LENGTH AND THE MINI-FAB CONCEPT

A. Gate Length—Description

As the devices shrink on VLSI chips, the main dimension that
summarizes the size is the gate width or channel length. Typi-
cally, a 0.5 m technology has transistor gates printed at a width
of 0.5 m. This printed length or the physical gate length,, is

shown in Fig. 1. The region between the source and gate and
between the drain and gate is doped with specific types of ions
to enhance some of the characteristics of the transistors. These
ions are “injected” by an implant device and then the ions are
induced to diffuse by a thermal treatment known as annealing.
Although great care is taken during the manufacturing to limit
the diffusion of the ions under the gate structure, some spreading
is inevitable. This has the effect of reducing the gate length. The
effective length, , is measured by electrical tests of the speed
of the transistor after manufacturing and is given by the relation

where is the lateral distance the source and drain ions extend
under the gate and is the “printed” length. The factors that in-
fluence effective gate length include product code (pattern den-
sity), operating voltage for the devices, and, of course, manufac-
turing processes such as implant, anneal, gate etch, lithographic
development, etc. More details on can be found in Wolf
[13].

From discussions with the engineers in the fab, and consid-
ering dozens of routing reports, we decided that there were 22
processing steps that had primary and secondary impact on

. These processing steps comprise the key steps in the
mini-fab. These 22 steps are the primary steps that define the
gate structures on the integrated circuit.

B. Mini-Fab

The mini-fab is similar to the via mini-fab [1], but is
much larger. In this case, we are concerned with the steps asso-
ciated with manufacturing the gates for the transistors, and our

mini-fab yield metrics are the effective linewidth, the poly
linewidth, and the transistor parameters, and . Table I
lists the 22 processing steps comprising the mini-fab. Al-
though these processes are scattered throughout the 300-step
route during the manufacturing, our basic conjecture is that only
these 22 manufacturing processes impact on gate manufacturing
and thus the effective gate length ( ). Of course, in reality,
interspersed between the 22 processes are other processes. We
are simply isolating these as an abstract cluster of processes. If
this conjecture is correct, then we can cluster these processes
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TABLE I

as if they were an individual superprocess (mini-fab) with the
wafers visiting these processes sequentially. The physics and en-
gineering associated with these steps are described in Streetman
[13] and Wolf [1414].

C. Objective and Goals for the Project

Our objectives are to find a regression “function” that will
allow us to conduct sensitivity analysis. We would like to under-
stand what are the driving factors for , poly linewidth,
and , and how these factors change from month to month,
from product code to product code, from technology to tech-
nology, from lot to lot, and from tool to tool. With this informa-
tion, we will have a better tool for engineers to control some of
the most important yield metrics in IC manufacturing. In the fol-
lowing, we describe a system model we built and implemented
in one of our fabs.

IV. DATABASE ISSUES

In the following, we will refer to parm-measurements and
measurements. The parm measurements are the result of

parametric tests after individual processing steps. They are also
called inline parametric tests and consist of measurements such
as film thickness, sheet resistance, and line width. Themea-
surements are current–voltage measurements at the end of man-
ufacturing and are used to determine the electrical characteris-
tics of the final chip. They are measurements on the transistors
within the chip and represent the yield metrics for effective line
width ( ), the poly line width, and the transistor parameters

and . (Hereafter, this set of four yield metrics will simply
be called [ ]. When specific elements of this set are needed,
we will refer to them accordingly.)

We extracted approximately 800 megabytes, consisting of
34 ASCII flat files, from an SPC database. Each file contained
one month of data on an old technology from our Orlando fab

(0.5- m technology). The data were from May 1995 through
February 1998. Each line in a file contained the following:
date (yymmddhhmm), lot number, processing-step number,
technology, product code, equipment ID, operator ID-code
(code numbers for the human operators), inline parametric
(code names/numbers for the parametric tests) name,
parameter name, parameter mean value, parameter
standard deviation, and parameter sample size. Each lot
of information consisted of 23 processes (22 processing steps
and one “step” with yield data). There were 9 technologies
(e.g., analog, BiCMOS-3V), 550 product codes (e.g., FPGA,
DSP), 112 equipment IDs, over 1100 operator IDs, 55 inline
parameter tests, and 23 tests. In the last two cases, the
names for the tests are not standardized, and there may be
several names for the same test or similar tests with different
test structures.

We then obtained scalar numbers (RIM and NCHIP, de-
scribed subsequently) from a lithography database. These
two numbers are used in the computation of pattern density.
Through extensive UNIX and C programming, all these files
were joined and reorganized to result in a new ASCII flat file
of 114 megabytes (about 8 : 1 reduction in data base size).
The categorical variables were converted to code numbers and
finally into binary vectors (to be described subsequently).

The data were preprocessed so that all the data associated
with one lot and one processing step was recorded in one record
of an ASCII flat file. This new file contained 111 117 records
and 5646 unique lots. ( , therefore not all
the lots were processed by all the steps.) As an example of one
of the records, consider the following vector which is discussed
and shown at the bottom of the next page.

The first four fields are a unix time stamp, the date/time, lot
number, and the process code number (in this case, code 12
is C05-D009, diffuse phosphorous), respectively. The next 25
fields, a binary vector, represent the technology. In this case,
the seventh element is set to1. The remaining elements in the
vector are set to 1. This indicates that the technology is 0.5
C-5 V. Although the data only have nine technologies the bi-
nary vector contains sixteen “empty” positions for future tech-
nologies and makes the model easily expandable.

The next two elements in the data vector are RIM and NCHIP,
respectively. RIM is the amount of unpatterned silicon along the
edges of the wafer, and NCHIP is the number of chips on the
wafer. These two numbers are used as indicators of pattern den-
sity (actually weak indicators). The actual poly-density was not
available from the lithography database. Our rational for using
this is that pattern density is a measure of the amount of pat-
terned material (photoresist or hardmask) on the wafer during
the gate etch. High pattern density means a larger number of
poly runners will be produced. Conversely, low pattern density
means more of the poly is etched away, and less is left on the
wafer after the etch. It is clearly dependent on the technology
and product code. Some ASIC’s will have a large number of
tightly packed transistors and more open area to etch. Others
will have a smaller number of transistors less tightly packed and
therefore have a smaller open area. Obviously if we have a huge
number of very small chips on the wafer we will have a greater
open area to etch than if we have a small number of huge chips.
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The number of chips per wafer is therefore an indicator (albeit,
weak) of pattern density.

The next binary vector represents the tool code. The vector is
long enough for possibly 25 different tools per process. In the
case shown above, only the fourth element is1, indicating the
presence of tool ID# 726F2 all the other elements are1.

The next 25-element binary vector represents the inline pa-
rameters measured at this process step. In this case, they map
to the following inline measurements (see parm table in the Ap-
pendix):

21002:POLYTHICKNESS:STDRANGE

31001:MEANSHEETRESISTANCE:STDAVERAGE

31002:MEANSHEETRESISTANCE:STDRANGE

31003:MEANSHEETRESISTANCE:STDRANGE

41001:MEANSHEETRESISTANCE:STDRANGE

51002:STANDARDDEVIATION:STDRANGE

The next 25-element vector contains scalar numbers repre-
senting the values for the above inline measurements (this vector
is called the inline parm code vector). The data were normal-
ized for unity standard deviation and zero mean. Elements not
present are set to the normalized mean value.

The next 25-element binary vector represents the
parameters (called the code vector). For this partic-
ular example, they are: Le_N0.5X15_B, LE_P_0.6X15_B,
N_0.5X15_H_Isub, N_0.5X15_V_Ion, PY1_Width_0.6. The
first two are measurements. The next three are ,

and poly line width, respectively. They are simply code
numbers used in our database.

The next 50 elements are grouped into two 25-element scalar
vectors. The first is the mean values, and the second is the stan-
dard deviations of the measured parameters.

All these elements are the relevant data for one lot at one
process step. The data were partitioned into inputs and outputs
and normalized on-the-fly while processing by the learning ma-
chines. The normalization was for zero mean and unity standard
deviation.

V. STATISTICAL ANALYSIS: PRELIMINARY DATA ANALYSIS

We conducted cross correlation, autocorrelation, and proba-
bility distribution studies for all the variables. In this section, we
will summarize the highlights. The full set of statistical charts
and graphs consists of two hundred pages and, of course, is be-
yond the scope of this paper.

Several interesting cross correlations were observed among
the inline parameters. All the following correlations were
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Fig. 2. Cross-correlation plot of parm43 and parm41 (see the Appendix).

greater than 0.3 in magnitude (i.e., ) (see parm table in the
Appendix).

parm13-parm4: 0.32
parm31-parm5: 0.37
parm33-parm8: 0.31
parm34-parm8: 0.37
parm33-parm10: 0.38

parm47-parm12: 0.35
parm33-parm24: 0.30
parm29-parm25: 0.53
parm34-parm25: 0.33
parm33-parm28: 0.47
parm34-parm28: 0.37

parm38-parm35: 0.52
parm38-parm37: 0.53
parm39-parm37: 0.33
parm41-parm37: 0.33
parm42-parm37: 0.34
parm39-parm38: 0.67
parm42-parm38: 0.46
parm42-parm39: 0.43
parm43-parm41: 0.98

Statistically, these are significant, but in reality these cross
correlations may have little or no predictive capability. For ex-
ample, parm43-parm41, with a correlation of 0.98, is plotted in
Fig. 2. The data are simply clustered in a small region of 2-space.

There were also a few interesting cross correlations among
the parameters. These include IVcode20-IVcode4:0.42,
IVcode21-IVcode4: 0.34 and IVcode21-IVcode20: 0.37 (see
Table II).

Cross correlations between the inputs and the outputs
were also examined. There were no linear cross correlations
larger than about 0.25. The largest cross correlation was
between code18 and parm41 (N_0.5X15_H_ and
particle_delta_std_avg). As shown in Fig. 3, there is little

TABLE II

Fig. 3. Cross-correlation plot of parm41 andIV code18 (see the Appendix and
Table I).

predictive capability from this information. All this implies is
that the desired mapping relations are nonlinear. A similar lack
of linear cross correlations was observed in the via mini-fab
model discussed by Rietmanet al. [1].

Turning now to the probability distributions, we will first ex-
amine the highlights of the sigma data. That is, the distribu-
tions of the standard deviations of the measurements. There
are a few outstanding data points, but for the most part the distri-
butions are quite tight. The sigma22 is the most interesting
with a mean value of 5.50 and a standard deviation of 63.65.
Of course, a few samples can cause the standard deviation to
“blow up.” In addition, keep in mind that these numbers repre-
sent the moments for the distribution of the standard deviation
of the sigma data.

There are no outstanding features in the distributions of the
means. All the distributions are reasonably tight. The mo-

ments for these distributions, as well as the moments for all the
other distributions, were coded in the learning machine software
for normalizing the inputs and outputs prior to any learning it-
erations.

For the inline parametric measurements, the distributions
are, for the most part, single-mode Gaussian or log-normal in
structure. A few of them are multimodal. The following are
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prominently bimodal: parm2, parm7, parm12, parm14, parm21,
parm32 (see the Appendix for index of code).

In examining the autocorrelations for the parms
( means), we find that there are no significant autocor-
relations in the variables. The same cannot be said about
autocorrelations on the inline parameters. Parm20 had a strong
autocorrelation out to a time lag of 50. This autocorrelation
suggests one could model the data with an ARMA model
[15]. Based on the time-lag, we believe these autocorrelations
are caused by operator shift changes and measurement style
differences among the operators. In the newer generation of
technology, these problems have been eliminated and there are
no autocorrelations.

In summary, the inputs and outputs are vectors of analog and
binary information. The elements of one input vector are not
correlated with similar elements from another input vector. A
similar observation has been made concerning the output vec-
tors. The cross correlations that exist between vector elements
are weak. Therefore, we can consider the input–output vectors
as independent identically distributed (IID) random pairs. Some
theoretical results show that even slightly dependent data pairs
behave roughly the same as independent identically distributed
data [16]. Furthermore, because of the near IID nature of the
data, our machine learning models can have single or multiple
outputs. (If the data were cross correlated we would need mul-
tiple output models.) The few autocorrelations suggest that these
variables may be best entered as time-delay or recurrent connec-
tions to the input. As we show in the next section, only multiple
outputs would be efficient for this project, and the input dimen-
sion may be large.

VI. SYSTEMS AND LEARNING MACHINE ISSUES

In this section, we will briefly discuss a systems’ view of
the mini-fab and discuss the theoretical foundation for the
learning machines investigated.

A. Systems View of Mini-Fab

The mini-fab is an abstract idea allowing one to cluster pro-
cesses that are associated with one or a few yield metrics. For
any given yield metric (e.g., ), we ask which processing
steps are the most important for determining this yield metric.
These steps become the relevant mini-fab. From a systems per-
spective, wafers needing transistors are input to the mini-fab,
and wafers with transistors are the output from the mini-fab. The
processes listed in Table I are the subsystems in the mini-fab.
After some of these processes, there is an inspection or mea-
surement. These measurements are yield metrics pointing to
the quality of the individual process (or the subsystems in the
mini-fab). The collection of these subsystem metrics can be
mapped to the entire systems’ metrics. That is, the inline para-
metrics, or “parms,” are mapped to the yield metric for the
mini-fab—in this case, , poly line width, , and .

Disregarding for the moment the architecture of the learning
machine for the task, we want to build a regression machine to
effect the appropriate system mappings. Consider that we have
22 processing steps. For most of the steps, we have an inline
measurement parameter indicating how the tool used in that step
performed. At one level, these measurements are the outputs
from the processes. From another viewpoint, they are the inputs

Fig. 4. Block diagram for two possible models of theL mini-fab.

to the model. This suggests two approaches to modeling the
mini-fab.

Fig. 4 shows a block diagram for two possible system models
to address the problem. ModelA is an hierarchical structure
and ModelB is not. ModelA consists of individual process step
models whose outputs feed into a model to compute the.
The inputs to the process models may be time-delay windows
of inline parameter measurements, tool data, product code infor-
mation, NCHIP, RIM, time/date, and technology (i.e., voltage
level). The outputs of the process models are inline parameter
values one or more time units into the future. If time-delay is
used, the models are predictors. If no time-delay is used, the
models are regression estimators. We want to determine the ef-
fects of tools and product codes on the inline parms and the ef-
fects of tools, technologies, and inline parms on the []. This
system model has the disadvantage of passing errors from the
subsystem models to the higher level model, but has the advan-
tage of small numbers of inputs per subsystem.

In contrast, modelB’s inputs are the inline measurements
from each process, the tool data, product code information,
time/date, and technology (i.e., voltage level and product code).
In this case, the inline data, entered into the model, will be for
all the processes of a given lot. The output would be the []
computation for that lot of wafers. Thus, the model would work
on a lot-by-lot basis. The disadvantage of this model is the
huge number of inputs at the input level. Its advantage is that
errors are not compounded.

Mathematically these models could be expressed as follows.
Model A is given by the system of equations
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where indicates the process model, andand are the full
input and output vectors, respectively, for that process model.
The maps are then combined with themap to calculate the
[ ]. Each of the maps does a mapping, and

and are on the order of ( ). The map
combines all the models so it does a and and are
on the order of ( ). These values are calculated
as follows. There are 22 processing steps each with 25 scalars of
data ( ). In addition, there are three scalars for the
time, RIM, and NCHIP, and there are 25 binaries representing
the product code or technology. The total input dimensionality
is 578. The 11 outputs forare given in Table II. It is important
to realize that these 11 outputs, e.g., -N, -P, etc., are all
members of the four classes of output types that fall into the
[ ] set.

Model A can be expressed more compactly as

Model B can be expressed more directly by

but, in reality, there are more difficulties involved in finding this
mapping.

The primary difficulty of this model is that it does a
mapping. The dimensionality of 3982 comes

about as a worst-case estimate. We have 181 fields per
record and we would need 22 processing steps of data
( ). Although this could be done with many
types of learning machines, in practice it could be difficult
with a small number of samples (we have 5646 samples).
Notice, however, that many of the elements are binary elements
representing active scalar inputs. For example, the inline parm
code vector, discussed in Section IV, indicates which of the
inline parameters are/are not in the inline data vector. Keep in
mind that each inline data vector consists of 25 scalar elements,
but all of them are not used for any given lot. In fact, only a
few of them are used for any lot and most of the elements are
simply <empty> for excess capacity in the model. The output
vector from the system model is also padded with excess
capacity. There are only a little over one hundred inputs active
for training the learning machine. The rest of the inputs are
excess capacity.

Let’s examine a simple example to better understand the com-
plexity of the models and how we can circumvent the curse of
dimensionality (cf. Vapnik [17], Gemanet al.[18], and Hassoun
[19]). Assume we have an input vector of five scalar elements
and an output vector of one element (i.e., a single scalar output).
Associated with this five-element scalar vector is a five-element
binary vector. Fig. 5 shows two neural network architectures.
The filled nodes represent binary elements (i.e.,1 or 1),
and the open nodes represent scalar elements. For this problem,
the binary vector acts as signals to indicate which elements in
the scalar vector the neural network is to “listen to” during the
training. This approach is common in training neural networks
when we want to associate specific binary information with spe-
cific scalar information (cf. Masters [20]). The input dimension-
ality on networkA is 10. An alternative approach is shown in
Fig. 5(b). Here we use the binary vector as a mask, or a gating

(a)

(b)

Fig. 5. Two neural network architectures described as examples.

network, to indicate which inputs in the scalar to feedforward.
The others are simply not fedforward. The input dimensionality
for network B is five. For the actual gating inputs shown in
Fig. 5(b) the input dimensionality is two. Using this approach,
we can have a huge reduction in the actual dimensionality for
training.

None of our input scalar vectors (inline parameters) for any
of the processing steps are filled with the full set of 25 elements.
Never are they all full at the same time for a given lot. After we
select a reasonable architecture offline, it is installed online and
trained to work with current technology and processes. The ex-
cess capacity in the learning machine system model will allow
it to adapt to new generations of technology, new processing
tools being brought on-line, increased manufacturing capacity,
new inline measurements, and new end-of-processing measure-
ments.

To reiterate, the inputs are viewed in clusters. We have 22
sets of 25 scalar elements representing the inline measurements
and the associated binary vector for gating the inputs. This gives
a total of 550 inputs. In addition, to train the neural network
we have a binary vector representing which technology/product
code is represented by each lot of wafers. This is a 25 element bi-
nary vector (again including excess capacity) used in the input
during training. In addition, we have a Unix time stamp nor-
malized to a small number by dividing by a large number rep-
resenting the year 3000 (a Y3K bug ?), and we have the scalar
numbers RIM and NCHIP. This gives a total of 578 inputs (a
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Fig. 6. The finalL mini-fab neural network architecture.

huge reduction from the 3982 calculated above). The Unix time-
stamp is the date for the start of the lot in the mini-fab, i.e., the
time the lot was processed by the first step in the mini-fab. Of
course, not all of these 578 inputs are active at any given time.
Most of them are always inactive. As in the small example in
Fig. 5(b) where the gating network reduces the input dimension-
ality to two, here the gating network reduces the dimensionality
to 131, which leaves 447 inputs as excess capacity in the net-
work.

Just as there is a gating network to determine which inputs
will be fed forward, there is a gating network to determine
which outputs are fed back during the backpropagation phase
of training the network. Schematically the entire model is
shown in Fig. 6.

B. Neural Network Learning Theory

The output of a neural network,, is given by

(1)

This equation states that theth element of the input vector is
multiplied by the connection weights . This product is then
the argument for a hyperbolic tangent function, which results
in another vector. This resulting vector is multiplied by another
set of connection weights . The subscript spans the input
space. The subscript spans the space of hidden nodes, and
the subscript spans the output space. The connection weights
are elements of matrices and are found by gradient search of
the error space with respect to the matrix elements. The cost

function for the minimization of the output response error is
given by

(2)

The first term represents the rms error between the targetand
the response. The second term is a constraint that minimizes
the magnitude of the connection weights. If (called the reg-
ularization coefficient) is large, it will force the weights to take
on small magnitude values. This can cause the output response
to have a low variance and the model to take on a linear behavior.
With this weight constraint, the cost function will try to mini-
mize the error and force this error to the best optimal between
all the training examples. The effect is to strongly bias the net-
work. The coefficient thus acts as an adjustable parameter for
the desired degree of the nonlinearity in the model. Details of
neural networks can be found in Rumelhartet al. [21] and Has-
soun [19], and details of learning with constraints can be found
in Vapnik [22].

As described above, the neural network has 578 inputs and
25 outputs. Of these, only 131 are active inputs and 11 are ac-
tive outputs. Both the input layer and the hidden layer also in-
clude a bias node set at constant 1.0. This allows the nodes to ad-
just the intersection of the sigmoids. The excess capacity in the
learning machine allows for new product codes, tool sets, etc.
The network has one “hidden layer” with 20 hyperbolic tangent
nodes, and so there are a total of 2860 adjustable connections
( ). (This calculation included the bias nodes
in each layer.) We have almost exactly twice as many samples
(5646) as we have adjustable parameters.

Though the number of connections, or adjustable parameters,
in a learning machine is not the critical element determining
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the generalization ability of the machine, it is certainly a crit-
ical element. Another critical element is the VC-dimension to
which we refer the reader to the literature (cf. Vapnik [17], [23],
Abu-Mosstafa [24], Baum and Haussler [25], Guyonet al.[26],
Vapnik et al. [27], Holden and Niranjan [28], and Haussleret
al. [29]).

The question of training neural networks with small data sets
is significant. Huanget al.[30] discuss a neural network plasma
etch model with 88 connections and 17 samples. They used the
“leave-one-out” cross-validation procedure (cf. Cohen [31]) to
develop the model. Kim and May [32] discuss a D-optimal ex-
periment to design the network architecture of a plasma etch
model, and Kim and May [33] use a modification of the back-
propagation algorithm in which the cost function allows the net-
work to slowly degrade or forget information that is no longer
needed. This is essentially the same as weight regularization or
weight minimization to reduce the network complexity. Newer
methods of automatic model selection have essentially elim-
inated empirical design and selection of neural network and
learning machine architecture (cf. Vapnik [17], Devroyet al.
[16], and van der Vaart and Wellner [34]).

For our model, cross validation consisted of two steps. First,
we cross validated by using randomly selected data from the
database that was not used in training. Our second model vali-
dation consisted of studying the Pareto charts for data sets from
which we expected specific results or trends. This validation will
be discussed in detail in Section VII.

C. Sensitivity Analysis to Investigate the Driving Factors of

Once the model is built, we would like to understand its be-
havior. There are two approaches to investigate the response of
the model. One of these is sensitivity analysis leading to the con-
struction of a Pareto chart or bar chart, the other is response
curves (surfaces). Neither method is very reliable for nonlinear
systems. However, the methods can supply some insight into the
process.

The sensitivity of the output with respect to the inputs is found
from the partial derivative of the particular input of interest
while holding the other inputs constant. The observed output is
then recorded. By repeating this for all the inputs, it is possible
to assemble response curves. The procedure has been described
by Klimasauskas [35] and by Deif [36]. For response curves, the
actual procedure consists of using a mean vector of the inputs
and making small, incremental changes on the input of interest
while recording the output. The first input, for example, is se-
lected and a small value is added to it. All the other inputs are at
their mean value, which should be very close to zero for normal-
ized inputs. The vector is then fedforward to compute the output
of the learning machine or system model. Further small values
are added and the outputs are collected in a file for graphics. The
final results can be represented as a curve of the change in the
input value versus the network output.

The importance of the inputs can be ranked and presented in
a bar chart known as a Pareto chart. Usually, the number of bars
in the chart is equal to the number of inputs. Each bar represents
the average sensitivity of that input. The procedure to construct

Fig. 7. Old and new neural networks connected in an arbitration network for
sensitivity analysis. The old network is trained with a huge data set and the new
network is trained with a small recent data set. The arbitration network is then
trained with the new data set and incorporates the results from the more mature
network.

this chart consists of using the real database vectors, adding a
small quantity to one of the inputs and observing the output.
Using this procedure, a matrix of the derivative of the response
with respect to the input is created for the elements of each input
vector. Each row in the database will give one row in the matrix.
The number of columns will equal the number of inputs to the
network or learning machine process model, and the elements
in the matrix will be the derivative of the output with respect
to the derivative of the input. The columns of the matrix are
then averaged. The derivatives are signed so the absolute value
is taken for each element in the vector. The resulting vector is
used to construct the bar chart.

Once the model is constructed the above procedures result
in good, though first-order, sensitivity analysis. In the case of
[ ], the driving factors can be determined from a frozen
model. In reality, the driving factors for [ ] will vary from
week to week. We know that the product code may be the
primary factor one week, and gate etch the next. We would
like a procedure similar to that used by the yield analysis
engineers. They can draw on a vast knowledge base from years
of experience. That knowledge is embedded intheir biological
neural network. They can examine a small set of new data from
a recently manufactured product and deduce a likely factor
causing the observed yield.

If we conduct sensitivity analysis on a frozen model of a
process, the results will always be the same. Because the math-
ematical operations of neural networks are vector-matrix multi-
plications and if the matrix does not change (i.e., frozen model)
and the same vectors are used in the multiplication, than the
same results can be expected. Ideally, we would like to train a
new model of the process on the small sample set sequenced
in time (e.g., 100 batches of wafers) and use that for sensitivity
analysis. The approach we take is similar to that used by the
yield analysis engineers. We readapt the old network to the new
small data set while using statistical regularization. We also train
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Fig. 8. Example of learning curve forL neural network mini-fab.

a new network (or learning machine), of the same architecture,
with the new data set. After these two networks are trained on the
new data, their outputs are fed into an arbitration network (see
Fig. 7). The final combined network model is used in the sen-
sitivity analysis. Basically, what this amounts to is conducting
sensitivity on the two networks and comparing the Pareto charts.

VII. RESULTS AND DISCUSSION

Our (132-20-11) network was trained according to (2) with
5000 lots of wafers. Fig. 8 is an example of the overall learning
curve. Keeping in mind that there are 11 active outputs, the curve
represents the average of the rms error for each of these 11 out-
puts. That is, we compute the rms error for each output and then
find the average of those. The curve shows that after 5 million
learning iterations, the neural network was still learning, but
that the average rms error is about 0.20. This implies that the
model is about 80% accurate for the combined outputs. The ac-
curacy of the model for the individual outputs is shown in the bar
chart of Fig. 9, and the individual outputs are shown in Table II.
We see, for example, that the model for the 0.6-m technology,
N-Channel , is about 90% accurate. The other outputs are
interpreted similarly.

We performed a validation on the model by first training with
about 2/3 of the data and using the other 1/3 for validation. This
1/3 sample was selected at random from the data file. Once we
saw that the validation error was at about the same level as the
training error, we quickly went on to explore the sensitivity and
Pareto. If the training error is acceptable and if the network was
trained with a large number of samples, then our philosophy is
to simply move on to the next stage testing in the real world. In
short, we let the real world be our validation. Since the model

Fig. 9. Bar chart showing accuracy of the model.

is to be used for sensitivity analysis, we will use our intuition of
the process(es) and realism of the Pareto for known sets of data
as our validation. Of course, intuition and realism are difficult
to quantitate, so we conducted several experiments in training
with different sizes of data sets and biased data sets. But, in
order to understand these results we first need to describe the
outputs presented in Table II. Items 1 and 3 are 0.6-m tech-
nology, N-channel . Items 2 and 4 are 0.5-m technology,
N-channel . Items 5 and 6 are 0.6-m technology, P-channel

. Items 7, 8, 9, and 10 are transistor parameters, and
for 0.5- m and 0.6- m technology. Item 11 is the poly line

width after manufacturing. In addition, there are two different
test structures for items 1 and 3 and two different test structures
for items 2 and 4.

Once we have a good model, we can conduct sensitivity anal-
ysis to determine the impact of each of the inputs on each of
the outputs. Table I is a list of code names and a description of
the individual processing steps. (They are not in processing se-
quence, but rather in alphabetic order by code name.)
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Fig. 10. Sensitivity response curves.

Sensitivity analysis is conducted as follows. Since for each
of the individual processing steps, there are several inputs (e.g.,
mean value and standard deviation for film thickness and mean
value and standard deviation of sheet resistance), and since these
are clearly coupled to each other, it makes sense to “tweak” them
in parallel. (as will be described below, this approach presented
the most “believable” results). The “tweakings” were done by
incrementally changing the relevant set of inputs by 0.1 starting
at 1.0 and ending at 1.0. Thus, there were a total of 21 sets
of incremental inputs. All the other inputs to the neural network
were set to the mean value of 0.0 (recall the data are normalized
for zero mean and unity standard deviation). After each feed-
forward, we observe the output and plot curves similar to those
shown in Fig. 10. Here we see four sensitivity curves. The en-
tire range of input results in sigmoid curves for the output. For
example, The curve labeled “A06E176” shows the sensitivity
of the poly gate etch process on the-channel electrical line
width ( ) for a 0.6- m technology. The other curves can be
decoded with the use of Table I. When the curve has a positive
slope, this indicates a positive correlation. For the “A06E176”
curve (the gate etch), this indicates that more oxide remaining
gives higher . The other curves can be interpreted similarly.

For each process step listed in Table I, we could generate a
whole set of sensitivity curves. By measuring the slope (in the
indicated region of Fig. 10) we can produce the Pareto chart
of the individual processing steps (Table I). Typically, one then
takes the absolute value of the slope in preparing the Pareto
chart. The direction of correlation is lost by this step, since typ-
ically one wants to find which processing step has greatest im-
pact. The entire set of eleven Pareto charts is shown in the Ap-
pendix. We conducted three experiments with the learning ma-
chine model of the system. In one experiment, we trained the
network with 5000 lots and then conducted the sensitivity. The
Pareto charts for this experiment are in the Appendix and have
the label “not biased, big data set.”

In another experiment, we trained the learning machine on a
small data set of 150 lots that were selected as a sequence in
time. With this small data set, the actual training was done by
selecting samples from the 150-lot set at random and feeding
it forward into the neural network for training. The validity of
training with a small data set was discussed above in the section
on neural network theory. After training, a sensitivity analysis
was done to compute the Pareto chart. The results are shown in
the Appendix. The charts for this experiment are labeled “little
data set.”

The objective of the experiment in training with a small data
set is to observe the [ ] Pareto for a small group of lots. This
would be equivalent to the yield analysis engineer sitting down
with a week of data and figuring out which processing steps are
having most impact on [ ] that week. With our automated
software program, this will give almost dynamic Paretos for the
[ ] set.

The third experiment consisted in biasing the training of 5000
lots. We selected all step data for spacer etch (C08E053) to be
either 1 or 1 on the input. The deciding point was based on
the target value for output number IV20 ( for 0.5- m tech-
nology). If the target value from the database was less than zero
(the mean value), the inputs for C08E053 were set to1. If the
target was 0, the inputs were set to1. This means that the
film thickness after the spacer etch would be either too thin or
too thick. So, if we look at the Pareto charts, the height of the
bar for spacer etch should change significantly for the 0.5-
chart, and because of interactions we should also see significant
changes in the spacer etch for the 0.5-chart. We would ex-
pect the spacer etch bar to increase in the biased experiment, and
this is what was observed. Usually, actual directions of changes
are difficult to predict because of the strong nonlinearity in the
neural network model. The Pareto charts can only provide infor-
mation as to which processing steps are most important. Subtle
changes from one chart to the another are not interpretable.
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VIII. C ONCLUSION

We have discussed an implementation in our fab of a large
system model capable of generating Pareto charts that suggest
which processing step is having most impact on four yield met-
rics: effective line width ( ), poly line width, and .
In addition, our system is capable of indicating which product
code (e.g., 0.5AC, 0.5BCI-3V) is having most impact on this
set of yield metrics. Due to space considerations, we did not
show the 11 Pareto charts of product code and tool ID. The full
set of Pareto charts act as suggestions for yield enhancement
and feedback yield control strategies. The current large system
model can also be used in a predictive mode to enable us to abort
processing. This aspect of the model was not discussed in this
paper, but is similar to that discussed in Rietmanet al. [1].

Our model is accurate to 80%, and it is capable of being
trained on only a few days of lot data. This training on a small
number of lots is significant, because it allows us to shorten the
time involved in feedback control of these yield metrics. The
next logical development would be to collect statistics on which
processing steps are the problem areas and to target them for
advanced process control.

APPENDIX

Parm Code Name Map
parm1 = “NA”
parm2 = “100020:LINEWIDTHSUMMARY:

AVGFEATURES”
parm3 = “100021:LINEWIDTHSUMMARY:

SIGMAFEATURES”
parm4 = “100024:LINEWIDTHSUMMARY:

STEPPEREXPOSURE”
parm5 = “10017:SETUPDATA:FOCUS”
parm6 = “10018:SETUPDATA:EXPOSURE”
parm7 = “21001:MEANTHICKNESS:STDAVERAGE”
parm8 = “21001:POLYTHICKNESS:STDAVERAGE”
parm9 = “21002:MEANTHICKNESS:STDRANGE”
parm10 = “21002:POLYTHICKNESS:STDRANGE”
parm11 = “21002:REMAININGFOX:STDAVERAGE”
parm12 = “21002:REMAININGGATEOXTK:

STDAVERAGE”
parm13 = “21002:REMAININGPOLY:STDAVERAGE”
parm14 = “21002:REMANINGGATEOXTK:

STDAVERAGE”
parm15 = “21003:MEANTHICKNESS:STDRANGE”
parm16 = “21003:REMAININGFOX:STDAVERAGE”
parm17 = “21003:REMAININGFOX:STDRANGE”
parm18 = “21003:REMAININGGATEOXTK:STDRANGE”
parm19 = “21003:REMAININGPOLY:STDRANGE”
parm20 = “21003:REMANINGGATEOXTK:STDRANGE”
parm21 = “21003:TWU:AVERAGEITEM24&6”
parm22 = “21004:REMAININGPOLY:STDRANGE”
parm23 = “31001:%STANDARDDEV.:STDAVERAGE”
parm24 = “31001:%STANDARDDEVIATION:

STDAVERAGE”

parm25 = “31001:MEANSHEETRESISTNCE:
STDAVERAGE”

parm26 = “31001:POLY%STDDEVIATION:STDAVERAGE”
parm27 = “31002:%STANDARDDEV.:STDRANGE”
parm28 = “31002:MEANSHEETRESISTNCE:

STDAVERAGE”
parm29 = “31002:MEANSHEETRESISTNCE:STDRANGE”
parm30 = “31002:POLY%STDDEVIATION:STDRANGE”
parm31 = “31003:%STANDARDDEVIATION:STDRANGE”
parm32 = “31003:MEANSHEETRESISTNCE:

STDAVERAGE”
parm33 = “31003:MEANSHEETRESISTNCE:STDRANGE”
parm34 = “41001:%STANDARDDEVIATION:

STDAVERAGE”
parm35 = “41001:MEANSHEETRESISTNCE:

STDAVERAGE”
parm36 = “41002:%STANDARDDEVIATION:STDRANGE”
parm37 = “41002:MEANSHEETRESISTNCE:STDRANGE”
parm38 = “51001:%STANDARDDEVIATION:

STDAVERAGE”
parm39 = “51002:%STANDARDDEVIATION:STDRANGE”
parm40 = “61001:LKBKFORDELTA:STDAVERAGE”
parm41 = “61001:PARTICLEDELTA:STDAVERAGE”
parm42 = “61003:LKBKFORDELTA:STDRANGE”
parm43 = “61003:PARTICLEDELTA:STDRANGE”
parm44 = “71001:HAZE:STDAVERAGE”
parm45 = “71003:HAZE:STDRANGE”
parm46 = “90030:WAFLWDATA:LINEAVG1”
parm47 = “90031:WAFLWDATA:LINEAVG2”
parm48 = “90032:WAFLWDATA:LINEAVG3”
parm49 = “90033:WAFLWDATA:LINEAVG4”
parm50 = “90034:WAFLWDATA:LINEAVG5”
parm51 = “90035:WAFLWDATA:LINESIG1”
parm52 = “90036:WAFLWDATA:LINESIG2”
parm53 = “90037:WAFLWDATA:LINESIG3”
parm54 = “90038:WAFLWDATA:LINESIG4”
parm55 = “90039:WAFLWDATA:LINESIG5”
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