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Abstract—Probe testing following wafer fabrication can pro-
duce extremely large amounts of data, which is often used to inspect
a final product to determine if the product meets specifications.
This data can be further utilized in studying the effects of the wafer
fabrication process on the quality or yield of the wafers. Relation-
ships among the parameters may provide valuable process infor-
mation that can improve future production. This paper compares
many methods of using the probe test data to determine the cause of
low yield wafers. The methods discussed include two classes of tra-
ditional multivariate statistical methods, clustering and principal
component methods and regression-based methods. These tradi-
tional methods are compared to a classification and regression tree
(CART) method. The results for each method are presented. CART
adequately fits the data and provides a “recipe” for avoiding low
yield wafers and because CART is distribution-free there are no as-
sumptions about the distributional properties of the data. CART is
strongly recommended for analyzing wafer probe data.

Index Terms—CART, multivariate statistical methods, tree re-
gression, yield analysis.

I. INTRODUCTION

SEMICONDUCTOR devices are typically described in
terms of many electrical parameters. The number of

parameters may exceed two hundred for a microprocessor de-
vice—many of which are correlated because process variation
at one of the many manufacturing steps can influence several
electrical parameters. Similarly, several steps may influence
each parameter.

High-volume wafer fabrication facilities typically produce
thousands of wafers per week, and each wafer may have from
fifty to several thousand chips. Upon exiting wafer fabrication,
most companies perform electrical tests, often called probe op-
erations. Regardless of the technology or wafer size, the probe
operation creates and archives extremely large data sets, whose
primary function is to determine product acceptance or rejec-
tion. This is not a thorough or efficient use of either the test data
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or the resources expended in measuring and storing the data; a
more effective use of these data sets can be made.

Since the wafer probe test data set is large, consisting of many
measurements on potentially many parameters, multivariate sta-
tistical methods are appropriate for modeling and analyzing the
relationships among the parameters and yield. A survey of liter-
ature reveals that certain types of statistical analysis of semicon-
ductor data are quite common. Linear and nonlinear regression
methods [2], [16] and neural networks [8] are common in an-
alyzing existing data, and designed experiments and response
surface methodologies are often used when analysts can obtain
more data [4]. Various methods for partitioning process varia-
tion [1] and for process monitoring are also used [4]. These ref-
erences are examples of such analyses.

This paper explores the use of two general classes of tradi-
tional multivariate techniques for this problem not necessarily
discussed in the references above. The traditional methods
are clustering and principal components and regression-type
methods. A nontraditional method called classification and
regression trees (CART) is also explored and results for these
methods are compared using data from an accelerometer
device.

The accelerometer is a surface micro-machined device cre-
ated by stacking sacrificial and permanent layers on the surface
of silicon wafers followed by removal of the sacrificial layers.
Accelerometers are principally used as a sensor for automobile
air-bag systems.

The data used in this study is described in Section II. Sec-
tions III and IV provide brief descriptions of the methods used.
We comment on the suitability of these methods for modeling
electrical parameter and yield data. References for further study
are presented throughout.

II. DESCRIPTION OFDATA

The original probe test data file (after data cleaning to re-
move incomplete or erroneous records) had 1122 records with
six identifier variables such as lot and wafer number, 23 sets
of descriptive variables representing the electrical parameters,
and average wafer yield, which is the response variable. The
raw electrical parameter data include capacitance and resistance
at certain temperatures. These 23 variables were then summa-
rized using six statistics (average, standard deviation, median,
first quartile, third quartile, and interquartile range) by wafer.
As a result, the file contained no raw data per chip, but rather
summaries of the electrical parameter variables. The result was
a total of 138 ( ) descriptive variables describing each
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TABLE I
VARIABLE DESCRIPTORABBREVIATIONS

record or wafer. The analyes described in this paper were per-
formed at the wafer level.

We will refer to having six “sets” of data, each set corre-
sponding to one of the six descriptive statistics mentioned
above. The sets and their abbreviations are given in Table I.

The variable averages set (starting with “”) is the by wafer
average of each of the 23 variables. The second set (starting with
“ ”) is by wafer standard deviation of each of the 23 variables.
The third through sixth sets are named similarly. The variable
names are omitted for confidentiality reasons and are substituted
with variable numbers; for example, is the average of vari-
able two and is the standard deviation of variable two.

Although some of the variables in the “average” set were nor-
mally distributed, most of the variables that were expected to
impact yield values were not. Figs. 1 and 2 show the descriptive
statistics for the variables (average yield) and an important
variable . Obviously, the assumption of univariate normality
is violated in both cases. In addition, a test proposed by [5],
with SAS code by [7], also confirms that the data is far from
multivariate normal. Finally, the descriptive variables were also
not all independent; some were functions of other variables, and
thus strong correlations were observed between certain pairs of
variables. Preliminary study of these predictor variables indi-
cated that the typical problematic issues associated with wafer
probe data also exist with this data set: The data are not normally
distributed and are not independent. The remainder of this paper
describes the search for analysis techniques that will adequately
deal with these common data issues while providing clues for
improving average yield.

III. T RADITIONAL MULTIVARIATE ANALYSIS METHODS

Two main categories of traditional analysis methods were em-
ployed for this data set. The first category includes clustering
and principal components. The second category includes a va-
riety of regression methods.

A. Clustering and Principal Component Methods

These methods were used in an effort to explain the differ-
ences in yields by reducing the dimensionality and finding struc-
ture in the data. For good expositions on these techniques, see
[6] or [11].

1) Cluster Analysis:Cluster analysis is usually performed
to classify (or cluster) observations into groups having similar
characteristics. Clustering algorithms (unlike classification al-
gorithms) assume that the groups or clusters are not known be-
fore the analysis. The method of clustering used in this analysis

is agglomerative clustering, which begins with no data points
assigned to clusters and ends with all the points in one cluster.
Several linkage methods were used including Ward’s, single,
and average linkage. Unfortunately, cluster interpretation pro-
vided virtually no useful inference regarding a relationship be-
tween the data points or the variables in the clusters.

2) Principal Components:Because of the extremely large
size of the data set, principal components analysis (PCA) was
used in an effort to reduce the dimensionality of the data. PCA
identifies a subspace near most of the data. This subspace is
ideally of much lower dimension than the observed data space.
Consequently, the projection of the data onto the subspace is a
lower dimensional summary or approximation of the data.

In PCA, the eigenvectors corresponding to the major eigen-
values of the sample covariance matrix are the subspace basis
vectors. These eigenvectors are the coefficients for the linear
combination of the observed variables that define the principal
component variable or “score.” For each data point, the score lo-
cates the data point along the axis of the eigenvector. Hopefully,
a small set of principal components will account for a large pro-
portion of the total variance in the original variables. The prin-
cipal components can often be interpreted physically based on
each components’ coefficient.

Two principal component analyses were performed in
Minitab [9] using standardized variables. First, each set of
variables (averages and standard deviations) were analyzed
separately. Second, all six sets were combined together and
principal components for these 138 variables were computed.

Both avenues produced similar results: the first five principal
components explained about 60%–80% of the variation in the
138 variables. Truncated results of the PCA with all six sets
are shown in Table II. Fig. 3 is a scree plot of the principal
components for the combined data set. Notice that about five
principal components are required to account for a reasonable
proportion of the variability in the data.

To illustrate the interpretability of the principal components,
we found that, for the average set of variables, the first two prin-
cipal components might be interpreted as capacitance. The third
principal component represents both gain and capacitance. The
components for the combined data set were more ambiguous
and did not indicate any obvious future course of action that
would lead to yield improvement. Many of the components had
the same variables and some variables seemed to be unrelated to
the other variables in the component. Plots of the first five prin-
cipal components showed one cluster with a number of outliers.
Fig. 4 is a score plot of principal component one versus prin-
cipal component two and is representative of the other plots. The
black dots represent low-yield wafers. We can see that although
some of the low-yield wafers are outliers on the score plot,
many are indistinguishable from the high-yield wafers which
are shown in gray.

B. Regression-Based Analysis Methods

After relatively little success with clustering and principal
components, a series of modeling efforts using linear regression
analysis was made. Description of the general procedure and the
variations discussed below are in [10].
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Fig. 1. Descriptive statistics for the variablex (yield) are shown. It is easy to see that the yield response variable is not univariate normal.

Fig. 2. Descriptive statistics for the variables . Many other variables have similar attributes. It is easy to see that this variable is not univariate normal.

TABLE II
EIGENANALYSIS OF THE CORRELATION MATRIX: THE FIRST FIVE

PRINCIPAL COMPONENTS

1) Ordinary Least Squares Regression:Ordinary least
squares linear regression was used in an effort to isolate vari-
ables that might have a direct link to yield. Stepwise regression
was first applied to determine potentially important variables.
We obtained a model with seven important variables and an
adjusted value of 0.66. The resulting prediction equation
is: yield

, where yield is between 0
and 100. Analysis of the model residuals revealed that most of
the very large residuals were associated with low yield wafers.

Since we are, in effect, trying to explain low-yield situations,
our model is not sufficient.

An alternative to regression on the original variables is regres-
sion on the principal components. This approach can be fruitful
when the original variables are highly correlated (see [10]), as
they are here. Unfortunately, linear regression on the principal
components resulted in an adjustedvalue of only about 0.28.

Models involving transformations on the predictor variables
and/or on yield, higher order polynomials terms, and spline
functions are often useful (see [3] for an example of regres-
sion splines applied to semiconductor data analysis). For our
example, two-way interactions of the significant variables from
the original regression were created and used as candidate
predictors along with the original variables in Best Subsets
regression in Minitab. Important interactions were found as a
result of this analysis, but the final regression equation did not
account for more variability in yield than the original model
which had an adjusted of 0.66.

The interaction model has an adjusted of 0.65 and uses
three of the interactions. The final equation isyield
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Fig. 3. Plot of eigenvalue versus principal component number is shown. Large eigenvalues (usually greater than one) explain a large amount of variation in
the data. From this plot, we can see at least five principal components are required to reduce the eigenvalues to only less than ten. It would take many principal
components to explain an adequate amount of the variation in the data.

Fig. 4. Plot of first two principal components. We can see that although some of the low-yield wafers are visible outliers, more than 30 of the approximately 50
low-yield wafers are in the center of the cluster.

. Plots of residuals versus the fitted
yields plots reveal outliers when trying to predict yields lower
than about 60%, which indicates that we still do not have a
model that will adequately predict all levels of yield.

2) Generalized Linear Models:The generalized linear
model (GLM) is a regression-type model that is very effective
in dealing with nonnormal data. A generalized linear model
consists of three components: a random component that is the
response variable distribution (or error structure), a systematic
component that is the linear predictor portion of the model
(analogous to the expectation function in a linear regression
model), and the link function between the random and the
systematic components that defines the relationship between
the mean of theth observation and its linear predictor. The
response distributions in a generalized linear model are all
members of the exponential family, which includes the normal,
gamma, exponential, Poisson, and binomial distributions. The

GLM parameters are estimated by the method of maximum
likelihood, so if the error distribution is normal and an identity
function is specified for the link, then the GLM reduces to a
classical linear regression model. See [10], [12] and [13] for
more information on GLMs.

We used SAS Proc GENMOD [14] for fitting the gener-
alized linear model to the yield data with a binomial response
distribution and the logistic link function. We performed two
analyses on the combined data set: first we used the important
principal components as the predictor variables, then we used
the original predictor variables that were identified as important
based on the stepwise regression analysis.

Wald inference statistics for the principal components model
indicate that the first four components were important effects.
The resulting model is

yield
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where are the first four principal components and yield
is again between 0 and 100. An -like statistic can be com-
puted and is 0.48. Wald inference for the model using the raw
variables also revealed significant effects. The resulting model
is shown in the equation at the bottom of the page. It is inter-
esting to note that the signs of variables indicate courses of ac-
tion to increase yield that are opposite the actions suggested by
the linear regression model. Furthermore, the signs on the model
coefficients indicate that an increase in the standard deviation
of several variables (3, 11, and 13) increases yield. It is possible
that the attempt via the GLM (which is essentially a nonlinear
model) to fit extreme groups of high- and low-yield wafers with
a single model is the cause. Finally, the-like statistic for this
model is 0.67, which coupled with the -like statistic from
the principal component model, indicates that our models still
do not provide a completely adequate explanation for the low
yields.

C. Conclusions to Traditional Methods

The traditional multivariate methods proved unsuccessful be-
cause they either did not adequately identify conditions that
would lead to high yield wafers, (as with ordinary least squares
regression and generalized linear models) or because the results
were difficult to interpret (as with principal components). In our
experience this is a relatively common occurrence in applying
these techniques to probe data; that is, it is likely not an artifact
of this specific data set.

IV. CLASSIFICATION AND REGRESSIONTREES(CART)

Another approach to model-building is based on a recursive
partitioning algorithm. Predictor variables are used to partition
the data points into regions with similar responses. This parti-
tioning allows one to approximate more general response sur-
faces than standard regression methods. Typically a binary par-
titioning is used. At each step, a predictor variable is selected
and a threshold is determined such that data points with the pre-
dictor below the threshold are placed in one subgroup, while the
other data points form a second subgroup. The method continues
by partitioning each of these subgroups by the same procedure.
The method is a tree-based technique, but where most tree-based
techniques are most often used with large, discrete data sets, the
classification and regression tree (CART) algorithm is designed
to work with continuous data. Regressors are partitioned using
deviation from the average response (yield) in each subgroup as
the criterion. By this approach, the user is able to build a set of
paths that lead to a desired average response. For a general dis-
cussion of CART, see [2]. For an application to semiconductor
manufacturing, see the dissertation of Sharma [16].

A regression tree has branches, which are paths to a leaf or
node. Two important criteria are deviance and node purity. De-
viance is similar to prediction error in a regression model. For
this type of data, deviance , where

is the number of nodes, is the number of points in the
node and is the average of the points in a specific node. In
this case, it can also be likened to a residual sum of squares in
a regression model.

Node purity measures the similarity of responses at a node
(in a subgroup), and the highest node purity is with identical
responses at a node. For the sake of brevity, we will not specif-
ically mention node purity values in this paper. The goal with
CART is to minimize model deviance and maximize node purity
without over-fitting the model. This is accomplished by using
various pruning techniques.

In addition to deviance and node purity, an-like statistic
can be obtained from deviance values to evaluate model fitness.

alone is not a good criterion, however. The value sum-
marizes the data across all regions, but CART users are often
interested in particular regions of the data (areas of very high
and very low yields). Deviance and node purity in the regions of
interest are better indicators of the model fitness in such cases.

Using S-PLUS’s [15] tree regression algorithm, the data were
analyzed with CART. Separate trees were created using each set
of predictors. We also built trees with predictors from multiple
sets. The best tree included both the average and standard de-
viation predictors and is shown in Fig. 5. There are branches to
both low and high yields.

The leftmost branch of this tree shows the best “recipe” for
high yields, with average yield over 360 wafers of 93.73%. Note
that the branches are conditional, which means thatless than
468.93 will do no good unless is less than 2.23.

Deviance measures indicate that the tree explains about 62%
of the deviance in the data, which is very similar to the best
regression method values. This does not seem to indicate
that the CART model provides benefits over the regression
methods. However, as a referee has pointed out, the CART
model is capable of essentially equivalent model accuracy,
but may be easier to interpret and provide intuitive guidance
for yield improvement. It is this ease of interpretation and
intuitive guidance to improvement that make the CART model
so appealing. Not only have we obtained a “recipe” for high
yields, but we have identified priority variables which should
be closely monitored in order to avoid very low yields.

Recall that, with the least squares regression model, the low
yields appeared as outliers, indicating poor fit. The fit of the
CART model in the low-yield regions has higher prediction
error (as given by the “root mean square error”24.5) than
the regions of high yield regions (rmse 5.05). This is com-
parable to the least squares models where a model fit using
only low-yield data has rmse 9.71 and a model fit using only
high-yield data as rmse 4.74. However, unlike the regression
model the CART model specifically identifies the low-yield re-
gions. Further, we are not concerned with prediction in this area,
but rather with identifying the variables in the area.

yield
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Fig. 5. Original tree with ten terminal nodes. Ovals denote nonterminal nodes. Rectangles denote terminal nodes. Deviance values are beneath the corresponding
node. Sample sizes at each node are denoted by “n.”

When using CART, it is best to prune the tree in order to avoid
over-fitting. One way to prune the tree is by cross-validation.
Cross-validation involves partitioning the data set into, say, ten
subsets, forming the tree with nine, and using the results to pre-
dict the other subset. This procedure is then repeated holding out
one of each of the other subsets, one at a time. A plot is produced
that indicates the deviance for various sizes (number of nodes)
of the tree. An example of this plot is shown in Fig. 6. More than
one cross-validation analysis with various random seeds used
for partitioning is usually recommended [17]. The cross-valida-
tion of the above tree indicates that about eight nodes would ef-
ficiently provide an acceptably low deviance. The resulting tree
with eight nodes is shown in Fig. 7.

Fig. 7 shows that reducing the standard deviation of variable
11 (a nonlinear function of both capacitance and conductance)
to less than 2.23 will greatly increase the chances of having high
average yield. Ensuring that the average of variable 21 (a capac-
itance measure) is above 468.9 eliminates further possibility for

low yields. The average yields improve as the far-left branch of
the tree is followed. Of course, if the standard deviation of vari-
able 11 cannot be reduced to 2.23, then keeping it below 4.97 is
the next best course of action.

V. SUMMARY

We have illustrated the use of several multivariate analysis
and modeling tools to study wafer probe test data. Although
clustering analysis seems ideal for this particular problem, the
results were disappointing. Results for principal component
analysis were very difficult to interpret and did not represent as
much of the inherent variability in the data as we had hoped.
When the SAS procedure GENMOD was run on the principal
components, the model was significant, but again, we faced
the problem of interpreting the principal components. Using
linear regression, we were able to obtain some interpretable
results, but with great time and effort and violation of normal
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Fig. 6. Adequate reduction of deviance in the tree model is possible using a tree with eight nodes.

Fig. 7. Final tree after pruning to eight nodes. Ovals denote nonterminal nodes. Rectangles denote terminal nodes. Deviance values are beneath the corresponding
node. Sample sizes at each node are denoted by “n.”

regression assumptions. The splitting of the data according
to the size of the residuals and to the yield indicated that the
procedure of CART would be ideal.

The CART analysis proved useful. Both the problem and
the data indicated a need for partitioning into high- and low-

yield branches. CART is essentially a distribution-free proce-
dure so the nonnormal yield data does not limit the application
of the procedure. This provided results without the difficulties
ordinarily associated with nonnormal data. The final tree after
pruning produced a best path to high yield (note the path with
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average yield equal to 91.9%) and a few paths to avoid (note the
paths resulting in yields of 47%, 57%, and 21%). We strongly
recommend CART as an exploratory and analysis technique for
wafer probe data.
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